
A Multiagent System Framework for Solving
the Student Sectioning Problem

[Extended Abstract]

Joseph Anthony C. Hermocilla
Institute of Computer Science

University of the Philippines Los Baños
College 4031, Laguna, Philippines
jachermocilla@uplb.edu.ph

Eliezer A. Albacea
Institute of Computer Science

University of the Philippines Los Baños
College 4031, Laguna, Philippines

eaalbacea@uplb.edu.ph

ABSTRACT
Student sectioning is the assignment of students to classes
in such a way that no classes assigned to a student conflict
in schedule and no class exceeds a specified class size. This
paper proposes a multiagent system framework for solving
the Student Sectioning Problem.

Keywords
student sectioning, multiagent systems, algorithms

1. INTRODUCTION
Student sectioning is the assignment of students to classes
in such a way that no classes assigned to a student con-
flict in schedule and no class exceeds a specified class size.
It is an important problem that a university must address
when automating its student registration process, especially
in universities with large number of enrollees and classes.
The student sectioning problem is usually treated as a sub-
problem of the more general timetabling problem.

We define the Student Sectioning Problem as a tuple SSP =
(A, B, C, D) where A is a set of students with elements a, B
is a set of subjects with elements b, C is a set of classes with
elements a pair c = (b, section), and D is a set of write− in
with elements d = (a, b). We specify the attribute timeslot
to a class c. We define slot as a pair t = (c, n) and we let E
be the set of all slots. The classize(c) is the number of slots
with c in the elements of E. We define an assignment as a
pair f = (d, t) such that given a write-in d and the slot set E,
(b, section) is in C and c is in t. We also define a predicate
conflict(a, b) over a set of assignments Q such that given
any two assignments f1 and f2 in Q, it returns true if the
timeslots of the c in f1 and c in f2 are the same and false
otherwise. The predicate full(c) over a set of assignments
Q returns true if the number of assignments in Q which
include c is greater than classsize(c) .The solution to a SSP

is a set S of assignments such that for all students a in A,
the subset Xa of S containing all assignments for student a,
conflict(f1a, f2a) is false and for all c in S, full(c) is false.
We refer to Xa as the schedule of of student a. The union of
all Xa for all a in A is the set S. The classlist for a class c
is a subset of A such that there is an assignment of student
a in class c in S.

The Student Sectioning Problem can be formulated as the
standard Constraint Satisfaction Problem(CSP) in artificial
intelligence. A CSP is a tuple CSP = (V, U, W ) with a set
of variables V , domain set U , and a set of constraints W . A
solution to a CSP is a set of assigment of values to variables
with little or no violation of constraints. Thus, standard
algorithms for solving CSP’s, like backtracking, can be used
to solve the Student Sectioning Problem.

In this paper, we present a multiagent system framework for
solving the Student Sectioning problem. We model the stu-
dent registration process as a multiagent system composed of
autonomous agents that exhibits specific behavior to achieve
their desired goals. The emergent interaction of the agents
generate a solution to the Student Sectioning Problem. The
main advantage of this approach is that the assignment can
be done in parallel and in a distributed manner since each
agent is autonomous having its own thread of execution and
can be geographically dispersed.

2. METHODOLOGY
In this framework, we defined three types of agents namely
scheduler agent, enlister agent, and student agent. These
agents are representative of the actors that interact in the
student registration process in a typical university. Agent
communication is accomplished via send() and receive()
primitives.

2.1 Scheduler Agent
The scheduler agent is the manager agent representative of
the registrar. It bootstraps the enlister and student agents
and responds to the queries from student agents (requesting
initial schedules). It also collects the schedule from each
student agent. Only one instance of the scheduler agent
exists in the framework. The scheduler agent is responsible
for collecting the final solution to the SSP.



Algorithm 1: Scheduler Agent Behavior

begin
PercentCompleted← 0;
StartAllEnlisterAgents();
StartAllStudentAgents();
while PercentCompleted 6= 100% do

Message← RECEIVE(StudentAgent);
switch Message do

case GET INITIAL SCHEDULE
SEND(StudentAgent, Schedule);

end
case SUBMIT FINAL SCHEDULE

UpdateFinalAssignment(StudentAgent,Schedule);
UpdatePercentCompleted();

end

end

end
SENDTOALL(STOP);
CommitFinalAssignment();

end

2.2 Enlister Agent
An enlister agent is responsible for responding to enlistment
and cancellation requests from student agents. In the frame-
work, each subject is assigned to an enlister agent. An en-
lister agent is responsible for enforcing the full() predicate
as described in the problem definition of SSP.

Algorithm 2: Enlister Agent Behavior

begin
Done← false;
GetAllClasslistsForSubject ();
while Done 6= true do

Message← RECEIVE(StudentAgent);
switch Message do

case GET SECTIONS WITH SLOTS
SEND(StudentAgent, SectionList);

end
case CANCEL SLOT

RemoveStudent(StudentAgent, Section);
end
case ENLIST SLOT

AddStudent(StudentAgent, Section);
end

end
Message2← RECEIVE(SchedulerAgent);
switch Message2 do

case STOP
Done = true;

end

end

end

end

2.3 Student Agent
A student agent is responsible for obtaining an assignment
and enforcing the conflict() predicate. Each student is rep-
resented by a student agent. A student agent has knowledge
of a student’s write−in information which it uses to contact
an enlister agent in an attempt to enlist.

Algorithm 3: Student Agent Behavior

begin
Done← false;
SEND(SchedulerAgent,GET INITIAL SCHEDULE);
WriteIn← RECEIVE(SchedulerAgent);
Schedule← empty;
while Done 6= true do

Subject← SelectUnassignedSubject(WriteIn);
SEND(EnlisterAgent(Subject),GET SECTIONS WITH SLOTS);
Sections← RECEIVE(EnlisterAgent(Subject));
if Sections is not empty then

Section←
SelectNonConflictingSection(Sections);
if Section not null then

SEND(EnlisterAgent(Subject),ENLIST SLOT,Section);
AddToSchedule(Section);
if Schedule is complete then

SEND(SchedulerAgent,SUBMIT FINAL SCHEDULE,
Schedule);
Done = true;

end

end

end
Message2← RECEIVE(SchedulerAgent);
switch Message2 do

case STOP
Done = true;

end

end

end
SEND(SchedulerAgent,SUBMIT FINAL SCHEDULE,
Schedule);

end

3. RESULTS AND DISCUSSION
A prototype implementation of the framework was devel-
oped using the Java Agent Development Environment (JADE)[1].
The figure below shows the the available slots, demand, and
assigned slots using data from the authors’ institute.

4. CONCLUSION
In this paper, we have presented a multiagent system frame-
work that solves the Student Sectioning Problem. The mul-
tiagent approach advantage is that the finding of assign-
ments can be done in parallel and in a distributed fashion.

5. REFERENCES
[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing

multi-agent systems with a FIPA-compliant agent
framework. Software: Practice and Experience, 31(2),
2001.


