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ABSTRACT
The process in which cancer cells invade or grow is very
complex. Thus researchers rely on simulation to study and
understand this phenomenon. Cellular Pots Model (CPM)
and the Lattice-Gas Cellular Automata(LGCA) is one model
for cancer cell growth simulation. In this work, we present a
Compute Unified Device Architecure(CUDA)-based imple-
mentation of CPM combined with LGCA and compare its
performance in terms of execution time to a CPU-based im-
plementation.
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1. INTRODUCTION
Mathematics and Biology seem to have no intersections since
both disciplines are thought to be far-fetched from each
other. Mathematics focuses on the numerical data while Bi-
ology focuses on complex data which is nonnumeric. How-
ever, mathematics is a powerful tool in which behavioral
patterns of complex biological phenomena can be modeled
using mathematical equations. This is mainly due to the ex-
pansion of both disciplines and collaborations between them,

as well as because of the large amount of data accumulated
from each discipline.

Cancer is a complex process since genetic changes within the
infected cells occur in a sub cellular level [6]. This results
into mutations within the cells that cause continuous ab-
normal divisions and cause destruction on neighboring cells.
This manner of cell mutation and destruction is called cancer
cell growth. Cancer has been marked as one of the diseases
that is very dangerous due to its high mortality rate.

The process in which cancer cells invade or grow within a
matrix of cells is complex. This makes fully understand-
ing it, a great challenge for researchers. Since the need for
fast evaluation and analysis of such complex phenomena cur-
rently arises, it attracted interest among scholars to create
models for it, particularly carcer cell growth, for use in sim-
ulations.

Simulations are imitations of real objects or phenomena which
does not necessarily require the actual object being simu-
lated to be present. It is a useful tool in executing these
phenomena in real time even if the phenomena being ob-
served is out of season. Some objects that are being simu-
lated are volcanic erruptions, tsunamis, and other disasters.
Animal or insect behavior can also be simulated. Some of
these animals or insects are bees, fishes, and more.

Simulations, particularly in disasters, allows one to observe
what will happen during a disaster given specific parameters.
Thus, we can plan ahead on how to prevent the disaster or
plan on how to escape from it. This is also applicable on
biological simulations wherein one can observe how diseases
spread throughout the body as well as how one might know
how to treat the disease.

Through the years, a lot of models concerning cancer growth
have been developed, simulated, and implemented; such mod-
els show cell-to-cell interactions and competitions. This pa-



per focuses on the Cellular Potts Model (CPM) combined
with the Lattice-Gas Cellular Automata (LGCA). A cellu-
lar automata is a set of cells in a matrix where in each grid
within the matrix, the cells evolve according to the set of
rules and formulas specified as every time step progresses.
The advantage of using this model compared to other sim-
ulation models of cancer growth is that this method only
needs three parameters, discussed later in the paper, based
on the well known physical ground[1].

The cells in a particular living body can be visualized as
a matrix where cancer cell growth may occur. Cancer cell
growth is the moving of infected cells throughout the matrix.
These cells detach themselves from their respective post and
moves in order to infect or invade other cells. Models de-
scribed the growth of cancer cells and their ability to degrade
neighboring cells [5].

2. PROBLEM STATEMENT
In time, the number of cancer cells in the system must be de-
termined in order to identify the growth rate. This is very
essential since curing cancer is a race against time. Also,
growth of cancer cells is happening simultaneously in a sys-
tem.

NVidia introduced Compute Unified Device Architecture
(CUDA) to be used in simulations especially in problems
involving intensive computing and highly parallel computa-
tions. CUDA makes use of the Graphics Processing Unit
(GPU) to speed up processing. Since the model or the be-
havior of cancer growth is parallel in itself, CUDA is well
suited for simulating its behavior [4]. Cellular automata,
CPM combined with LGCA in particular, contains steps
that can be executed in parallel, and thus can be imple-
mented in CUDA.

3. METHODOLOGY
The general steps in the study follows the outline presented
in Figure 1.

Figure 1: General flowchart used in the study.

CPM and LGCA

A square lattice of size 300x300 is defined wherein each site
with coordinates (i, j) is occupied by a cell. Each cell has the
ability to proliferate, be quiescent, or die due to apoptosis or
necrosis. Proliferation is the ability of a cancer cell to grow
rapid in number; Quiescent is when a cancer cell is inactive
or will just stay the same; Death of a cancer cell through
apoptosis will replace the location of a cancer cell with a
healthy cell, and; Death through necrosis will replace the
location of a cancer cell with a necrotic cell. Each cell in
the matrix defined is exposed to the same probabilities of
whether the cell will proliferate or undergo mitosis(pm), be
quiescent (pq), or die due to apoptosis (pa) or necrosis (pn),
the equation for these probabilities are shown below:
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These probabilities are dependent on the following configu-
ration energies which represent the cell-to-cell interactions:
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N in the configuration energy represents the number of necrotic
cells while C represents the number of cancer cells at coor-
dinate (i, j). The constants seen here which are KCC , KNC ,
and KNN are the cancer − cancer, necrotic − cancer, and
necrotic− necrotic connections within the cellular matrix.

Reaction, Propagation, and Redistribution



A 2D array is created for a truth table with 25 entries. Each
line in the truth table represents each canal combination
that might be present in each cell site in the cellular matrix.
The 0’s in the canal represent the necrotic cells and the 1’s
represent the cancer cells present in the site. For example,
given 00100, the number of cancer cells in this canal is one
while the number of necrotic cells is four. A 2D array which
holds the reverse of each canal is also needed. In this re-
versed 2D array, the 1’s represent the necrotic cells while
the 0’s represent the cancer cells. This reversed canal array
will be used in the addition process.

The next step is to count the number of cancer cells per canal
and store it in an array, this is used in the redistribution step.

Canal Cancer Cells Canal Cancer Cells
00000 0 10000 1
00001 1 10001 2
00010 1 10010 2
00011 2 10011 3
00100 1 10100 2
00101 2 10101 3
00110 2 10110 3
00111 3 10111 4
01000 1 11000 2
01001 2 11001 3
01010 2 11010 3
01011 3 11011 4
01100 2 11100 3
01101 3 11101 4
01110 3 11110 4
01111 4 11111 5

Table 1: Number of cancer cells present in a canal.

For each combination of the number of necrotic and cancer-
ous cells, in assigning different probabilities for mitosis(pq),
apoptosis(pa), necrosis(pn), and quiescent(pq) which are de-
pendent on their respective energies, the number of the can-
cer cells in the C variable and necrotic cells in the N variable
are substituted to the energy formulas. Given the number of
necrotic and cancerous cells present, the probabilities that
are most likely to happen can be identified. This process is
decribed below.

1. Having any number of necrotic cells from zero to five
and having zero cancer cells falls to the cluster of being
quiescent.

2. Having zero necrotic cells with four or less number
of cancer cells or having the sum of the number of
necrotic cells and cancer cells less than or equal to
four opens the probability where mitosis, apoptosis,
necrosis, and quiescent may happen. Probability for
mitosis equals pm. Probability for apoptosis equals
pa + pm but will later on be just pa because mito-
sis cannot happen if the cancer cell bacomes healthy
again. Probability for necrosis equals pn + pa + pm

but will later on be just pn + pm because necrosis and
apoptosis cannot happen at the same time in the same
cell. Probability for quiescent equals 1 but will later
on become 1 − (pq + pm + pa + pn).

3. Having zero necrotic cells with five cancer cells or hav-
ing the sum of the number of necrotic and cancer
cells equal to five completely deletes the probability
for healthy cells to reproduce. pm = 0. Probability for
apoptosis equals pa. Probability for necrosis equals
pn + pa but will later on be just pn because necrosis
and apoptosis cannot happen at the same time in the
same cell. Probability for nothing to happen equals 1
but will later on be equal to 1 − (pq + pm + pa + pn).
Else, quiescent will take place.

Each cell contains a value of 0 to 31 which holds the combi-
nations of 0’s and 1’s that represent each canal, which is also
the state of the cell. The fate of the cells depends on the
neighborhood surrounding it. Each direction of the neigh-
bors is represented by numbers 1, 2, 4, 8, and 16 which is
the direction of influence by the neighborhood; 1 on the left,
2 downward, 4 on the right, 8 upward, and 16 on the site of
the cell currently being examined. The propagation of the
cells is dependent on the movement and the movement may
change depending on the collision of cells. They propagate
according to the comparison of the movement towards the
neighboring cell that inhibits the direction of the movement.
Propagation is done by comparing first each neighborhood
of the cell site by the corresponding direction of each cell
in the neighborhood from the site using a bitwise AND op-
erator and then compare all the neighboring cells using a
bitwise OR operator.

Figure 2: Site movement values.

Redistribution of cells happens first to the necrotic cells since
these are less motile than cancer cells. Any cell has a value
that represents its state which is represented by binary num-
bers of base 25 which are the canals. In each configuration
or canal, count the number of cells. The array where the
counting was stored is used.

1. If the count of necrotic cells in the canal of the site
is zero, then there are no necrotic cells present. If the



count of cancer cells in the canal of the site is zero then
there are no cancer cells present in the site. Else, due
to abnormal union of the cancer cells, the site where
the cancer cell is present will change its state based on
the relative magnitude of chemotoxic materials in the
site which is assumed by the authors of the model as
equal to the relative number of necrotic cells adjacent
to the site.

2. If the count of necrotic cells in the canal of the site is
one, then that site will assume a value of sixteen for
the necrotic cells since no change will happen to the
necrotic cells on the site. The part on the cancer cells
is the same as mentioned.

3. If the count of necrotic cells is more than one, then due
to abnormal union of the cells, the site where the cell
is present will change its state based on the relative
magnitude of chemotoxic materials in the site for both
necrotic and cancer cells. The exception is when the
number of cancer cells present is equal to zero, then
the abnormal union of cells will only happen to the
necrotic cells.

The action at each time step is to know the final state of
a cancer cell, when it will proliferate (mitosis), do apopto-
sis, be necrotic, or be quiescent, which is dependent on the
probabilities obtained using the formulas. If a site is not
occupied by any cancer cell, then nothing happens on the
site. Else, a random number is generated and compared to
the probabilities, given the number of necrotic and cancer
cells in the site. When the random value:

1. is in the range [0, pm) then do mitosis. Mitosis in-
volves abnormal union of cells so what was done in the
redistribution step is performed.

2. is in the range [pm, pa) then reduction will happen to
the cancer cell since these will die due to apoptosis.

3. is in the range [pa, pn) then reduction will happen to
the cancer cell since these will die due to necrosis and
the cancer cell will become necrotic.

Else, the cells are quiescent so nothing happens. This clus-
tering is dependent on the number of necrotic and cancer
cells present in the site so each state still has the same prob-
ability to happen.

Software Requirements

The necessary programs that were used in order to use CUDA
in the study were installed. These programs include:

1. Visual C++ 2008

2. devdriver 3.1 winxp 32 257.21 general

3. cudatoolkit 3.1 win 32

4. gpucomputingsdk 3.1 win 32

The methods were first implemented using OpenGL in C++
for the pure CPU-based implementation. The functions
used were eventually converted to CUDA with OpenGL and
C++ still used. The CPU used is Intel(R) Core(TM)2 Duo
CPU E7500 @ 2.93 GHz and the video card used is NVidia
GeForce 9500 GT.

CUDA was used because GPU is specialized for parallel com-
putations, this feature of GPU is what graphics rendering
is about [4]. GPU has more transistors for data processing
rather than data caching and flow control when compared
to CPU. This can be seen in the figures below.

Figure 3: CPU transistor allocation[4].

Figure 4: GPU transistor allocation[4].

GPU is good to use in problems that can be expressed in
parallel since all the threads involved in CUDA run the same
program with high arithmetic intensity. Because the same
program is executed for each data element, there is a lower
requirement for sophisticated flow control [4].

A relevant data structure used in the implementation is the
array. The matrices used in the model were represented as
2D arrays. These arrays were allocated in the GPU through
the cudaMalloc() function and copied the contents from the
host to the device through the cudaMemcpy() function. In
CUDA, two 2D arrays are needed for each matrix, one for



the host and one for the device. The transistors contain grids
that contain blocks which in turn contain threads. Since the
same program or code is executed by the threads per block,
parallelism takes place. Firgure 5 shows this scenario.

Figure 5: Grid and Block Visualization [4].

In the CPM combined with LGCA CUDA implementation,
functions that were translated to CUDA include the proba-
bility function which computes for the probability of mitosis,
apoptosis, necrosis, and quiescent based on energy functions.
Matrix initialization and matrix copying functions were also
translated including functions for canal generation and the
propagation of the cells.

Figure 6: Simulation snapshot at t=0, t=50, t=100,
and t=150.

4. RESULTS AND DISCUSSION
A visualization of cancer growth is shown in Figure 6. The
simulation was done on a 300x300 matrix where cancer cells
were planted in the middle of the matrix. The defined values
for the KCC , KNC , and KNN are 3, 1.5, and 3, respectively.

These values were taken from the study done by M. Ghaemi
and A. Shahrokhi[1] for validation.

Converting a function call into CUDA requires two variables
for a particular parameter in a function. The first variable
is for the host and the second one for the device. The value
used in the function, which is present in the host variable,
is copied to the device variable for use as the value in the
CUDA function.

The number of blocks defined is simply the N dimension of
the array or matrix used; a matrix with a size N requires
NxN blocks. The number of threads used was also defined.
The number of blocks point towards the function call and
the number of threads point towards the device parameters
of the function. Then the value of the needed device variable
is copied to its partner host variable so that the variables are
updated. Finally, all device variables used are freed. Figure
7 shows an example of the CUDA function call used in the
implementation.

Figure 7: Host code which calls the CUDA function.

In the converted CUDA function, the defined variables x
and y are set to be blockIdx.x and blockIdx.y times the
blockDim of each and add each threadIdx declared for each
variable. These traverse the device of the GPU and use
the GPU to process the values that the function performs.
The i variable has the value ((MATRIX DIM + 2) ∗ x) +
y) which is the 1D array position value equivalent to a 2D
array position (x, y). Figure 8 shows an example of a CUDA
function in the implemented program.

Figure 9 shows the growth in number of cancer cells for each
time step. Since agents that may stop cancer growth were



Figure 8: Propagate function implemented in
CUDA.

not included in the model, the graph of the result shows that
the cancer cells spread rapidly in time.

Figure 9: Cancer cell growth.

The average execution time of the program per time step
was measured. The program was executed three times and
the average of these executions were plotted. The execu-
tion time is how long a particular time step is executed by
the program in terms of milliseconds (ms) while the time
step is the progression or multiplication of cancer cells from
only a few to many. In Figure 10, it is shown that the per-
formance of the CPU-based implementation is better than
that of CUDA-based for the matrix of size 300x300.

Other runs were performed for different matrix sizes to check
whether it affects the performance. The sizes were 400x400,
500x500, and 600x600. Still, it can be seen in Figures 11-
13 that the performance of CPU-based implementation is
better than that of the CUDA-based.

5. CONCLUSION
A CUDA-based implementation of the CPM combined with
LGCA to model cancer cell growth has been presented. This

Figure 10: Comparison of the average execution
times of the CUDA, CPU, and when only one
function of the program (propagation function) was
transformed into CUDA with dimension 300x300.

Figure 11: Comparison of the average execution
times of the CUDA, CPU, and when only one
function of the program (propagation function) was
transformed into CUDA with dimension 400x400.

Figure 12: Comparison of the average execution
times of the CUDA, CPU, and when only one
function of the program (propagation function) was
transformed into CUDA with dimension 500x500.

implementation takes advantage of the parallel processing



Figure 13: Comparison of the average execution
times of the CUDA, CPU, and when only one
function of the program (propagation function) was
transformed into CUDA with dimension 600x600.

capabilities of the GPU to model cancer cell growth, which
is naturally parallel. Based on the results of the simula-
tion, it can be concluded that the CPU-based implementa-
tion outperforms the CUDA-based implementation based on
the average execution times. Although ideally the CUDA-
based implementation should perform better, other factors
not covered in this study may have caused the poor perfor-
mance. One possibility is that the video card used in this
study is an old model which might have an effect resulting to
the poor performance of the CUDA-based implementation
when compared to the CPU-based implementation.

6. RELATED WORK
Several medical mathematical models have already been de-
veloped and used by mathematicians due to the need of
mathematics to be involved in cancer biology.

Such models included an optimal-control model that pro-
vided physicians the best timetables for drug treatments
which was studied by Renee Fister [2], a mathematician at
Murray State University in Kentucky. Carl Panetta, also
a mathematician at Murray State University in Kentucky,
used systems of elementary differential equations and pre-
dicted the drug response of a patient [2].

A model on brain tumors which used a complex three di-
mensional brain anatomy and predicted the spread of the tu-
mors was developed by applied mathematicians James Mur-
ray and Kristin Swanson from University of Washington [2].
In Israel, A member of the Institute for Medical Biomathe-
matics, Zvia Agur, worked on a model called virtual cancer
patient for non-Hodgkins lymphoma. The said model exhib-
ited all the stages of a cancer cells lifecycle [2].

A mathematical model for Chronic Myelogenous Leukemia
(CML) and T cell interaction was proposed by Helen Moore
and Natasha Li [3] which modeled the interactions and rates
of changes between three classifications of cells which were
naive T cells, effector T cells, and CML cancer cells using
differential equations.

Benjamin Ribba, Thierry Colin and Santiago Schnell also

discussed a multiscale mathematical model which investi-
gated ”the role of gene-dependant cell cycle regulation in
the response of tumors to irradiation therapeutic protocols”
[7].

Katarzyna Rejniak and Alexander Anderson introduced Hy-
brid models of tumor growth [6] which integrated continu-
ous and discrete variables that represented entities like cells
involved in cancer cell growth. The integration formed con-
nections between the entities and exhibited cell interactions
within tissues. On the other hand, the integration also ex-
hibited the natural interactions between the variables when
tumor growth was put under consideration.

Ignacio, et al introduced a Hybrid Discrete Continuum Two-
Scale Model which defined that each cell is part of an ex-
tracellular matrix and was an individual entity within the
said matrix. Interactions within entities were represented
by potential functions while the spatial-temporal dynamics
were represented using differential functions. These equa-
tions characterized the invasion of cancer cells within the
matrix [5].
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