
Terra: A 3D Terrain Generator and Visualizer

Richard Christiensen E. Aluning
Institute of Computer Science
College of Arts and Sciences

University of the Philippines Los Baños
College 4031, Laguna, Philippines

rcaluning@yahoo.com

Joseph Anthony C. Hermocilla
Institute of Computer Science
College of Arts and Sciences

University of the Philippines Los Baños
College 4031, Laguna, Philippines
jachermocilla@uplb.edu.ph

ABSTRACT
Artificial terrains are widely used in animations, computer
games, and simulations. This study investigates the char-
acteristics of terrains generated by three algorithms namely
Fault Formation, Midpoint Displacement, and Perlin Noise.
Implementation of these algorithms in Terra allows users to
visualize and navigate over the generated terrain in 3D.

1. INTRODUCTION
Terrain is an area of land. Examples are rocky mountains,
grass plains, rolling hills, all combining to form a beauti-
ful landscape. Terrains are used in diverse fields, not just
because of their aesthetic value, but also for scientific and
entertainment applications.

Modern computer games, such as flight simulators and role-
playing type games, involve players navigating over moun-
tains and islands. These types of terrains add realism to the
gaming experience of players.

Scientists studying hydrological processes use terrains to test
flow routing algorithms. Different types of terrain can affect
the behaviour of flows. Flood simulations use terrains to
determine areas where floods are most likely to occur.

Terrain data can be obtained by manual surveying of actual
land formations or remote sensing. However, this approach
is tedious and not cost-effective. An alternative is to use
computer algorithms to generate artificial terrains for use in
applications described above.

This study investigates the characteristics of terrains gener-
ated by Midpoint Displacement, Fault Formation, and Per-
lin Noise. These algorithms are implemented in Terra. Users
can generate terrains by selecting a desired algorithm. Gen-
erated terrains can be visualized and navigated in 3D.

The succeeding sections discuss the details of the algorithms
and the actual result of the implementation in Terra. Sample

terrains for each algorithm were generated and evaluated.

2. THEORETICAL FRAMEWORK
2.1 Heightmaps
A heightmap is used to store elevation data. It is normally
represented as a grayscale image file or a two-dimensional
array of values. Algorithms for generating artificial terrains
populate a heightmap with height or elevation values.

2.2 Midpoint Displacement
Midpoint Displacement[2], also known as Plasma Fractal or
Diamond Square Algorithm, is a fractal technique which ex-
hibits self-similarity and is recursive. A heightmap’s corners
are named points A, B, C and D. The midpoint of segments
AB(1), BD(2), DC(3) and CA(4) are first calculated. The
midpoints (1,3) and (2,4) are then connected to obtain the
intersection point E. To calculate the height of E, the height
values of A, B, C, and D are averaged and a 2−roughness

coefficient is added. Each quadrant is then processed re-
cursively using the same principle. Figure 1 illustrates how
Midpoint Displacement works.

Figure 1: Initial configuration of a heightmap when

using Midpoint Displacement.

2.3 Fault Formation
Fault Formation[7] generates faults in a terrain. A random
line is added to an empty heightmap then a random height is
assigned to a side. The process is repeated until the desired
terrain is achieved. The random height is linearly decreased
and must eventually reach zero. Figure 2 shows the first
step of Fault Formation on an initially empty heightmap.

2.4 Perlin Noise
Perlin Noise adds up noise functions at a range of different
scales. It is calculated using n dimension. A noise function

Figure 2: Initial configuration of a heightmap when

using Fault Formation.

and an interpolation function are needed to generate the
height values. The noise function generates random values
and the interpolation function makes the values closer to
each other. The algorithm is derived from the idea of using
waves to generate a terrain. Figure 3 is an example wave
function used in Perlin Noise.

Figure 3: A wave function used in Perlin Noise.

3. SOFTWARE DEPENDENCIES
The following are the third-party libraries used in imple-
menting the algorithms in Terra:

• Open Graphics Library (OpenGL)[9][1]

• Graphics Library Utility Toolkit(GLUT)

• Graphics Library Utility Interface (GLUI)

• Simple DirectMedia Layer (SDL)[6]

• Microsoft Visual C++ 2008 Express Edition

4. RESULTS AND DISCUSSION
Figure 4 shows the user interface of Terra. The user can
choose the algorithm to generate the artificial terrain. Each
algorithm has several parameters that users can supply. These
parameters will affect the visual quality of the terrain. De-
sired terrain can be generated by assigning appropriate val-
ues to the selected algorithm’s parameters.

Midpoint Displacement parameters include number of iter-
ations, height range, terrain roughness and random seed.

Figure 4: User interface of Terra.

The number of iterations computes the number of vertices
of the terrain. It can be computed as (2N) + 1 where N
is the number of iterations. Because of this property, Mid-
point Displacement always has the same width and height.
Figure 5 shows the growth of the number of vertices per it-
eration. The height range parameter displaces the terrain
but is decreased per iteration. The random seed configures
the random number generator’s output.

Figure 5: Vertex count per iteration increase in Mid-

point Displacement.

Fault Formation parameters include width, height, minimum
displacement, maximum displacement, number of times of
displacement, random seed and filter value. The width and
height parameters configure the size of the grid. The mini-
mum and maximum displacement are used to calculate the
depression and elevation of the terrain respectively. Every
time the terrain is raised, it must be decreased linearly. The
formula for displacement is given below.

disp = maxDisp+ (iterationsDone
itMinDisp

)(minDisp−maxDisp)

maxDisp and minDisp refers to the maximum and minimum
displacement, iterationsDone is the current iteration and it-
MinDisp is the minimum iterations to displace the terrain.
If itMinDisp is equal to 100, then displacement will be equal
to the minimum displacement.

The random seed configures the random number generator’s
output. All the parameters except for filter value are in
the standard implementation of Fault Formation. In this
study, the Finite Impulse Response (FIR) filter was used to
simulate erosion. FIR filter erodes the sides of the elevated

regions to smoothen the heightmap.

Perlin Noise parameters are width, height, octaves, persis-
tence and zoom. Width and height represents the dimen-
sion of the terrain. Octaves refer to the number of gener-
ated noise to be added. Persistence is the terrain roughness
and zoom is the size of the terrain features. The octaves
parameter sums up the generated noise and takes its aver-
age. Persistence is the amplitude of the terrain defined as
amplitude = persistencei where i is the ith function to be
added and computes the elevated areas in the terrain. Zoom
is the size of the features of the terrain. A high value of zoom
generates a terrain with large features.

4.1 Terrain Visualization
The terrain generation algorithm creates a heightmap which
serves as input to the visualization routine. Each column
and row of the heightmap becomes the x and y coordinates
and the height value the z coordinate, forming a single vertex
(x, y, z) in 3D. OpenGL is used in this stage to render the
terrain. The primitive GL QUADS is used to render a tile
which consists of four vertices. After rendering all individual
tiles the terrain mesh or wire frame is formed as shown in
the Figure 6.

Figure 6: Terrain mesh created from a heightmap.

4.2 Texture Mapping
To add realism to the visualization of the terrain, the wire
frame model is texture-mapped. SDL is used to assign the
texture images to the tiles. A texture-mapped view of Figure
6 is shown in Figure 7.

4.3 Water Level
Terra also provides an option for rendering water over the
terrain, especially when visualizing islands. Water level in-
formation however is not included when the heightmap is
saved. It is only a parameter used in the visualization that
can be set when viewing the terrain.

4.4 Saving Generated Terrain
The generated terrain can be saved as grayscale image file,
specifically a .BMP file. The intensity of the pixels represent
the height values. Terra can also load heightmaps created
from other programs as long as they are in the .BMP format.

Figure 7: Texture-mapped terrain of Figure 6.

4.5 Evaluation of the Algorithms
The evaluation of the effectiveness of the three algorithms
in generating artificial terrains is based on the visual inspec-
tion of the generated terrain. Appropriate parameters of
an algorithm are supplied to approximate the appearance
of a target terrain. In this study, the target terrains are
plains, mountains, and islands. These terrains were chosen
because they show the extreme cases on which a certain al-
gorithm can simulate. Plains must be realistic enough such
that that it is not purely flat but with bumps and low el-
evations. Mountains, on the other hand, should appear to
be realistic in terms of height and roughness. Lastly, islands
should simulate a chunk or chunks of a coastal terrain.

4.5.1 Mountains
Figures 8-10 shows the texture-mapped generated terrains
using the three algorithms to approximate a mountain. Mid-
point displacement has a peak and has a rough surface.
Fault Formation literally generates faults that looks like
stairs. Perlin Noise rendered a smooth yet steep mountain.

4.5.2 Plains
Figures 11-13 shows the texture-mapped generated terrains
using the three algorithms to approximate a plain. The re-
sults of the plains generated are interesting. Midpoint Dis-
placement generated a plain that suggests a rocky surface.
Fault Formation shows cracks that looks like eroded soil.
Perlin Noise failed to simulate a plain effectively.

4.5.3 Islands
Figures 14-16 shows the texture-mapped generated terrains
using the three algorithms to approximate an island. The
islands are mountains rendered with water. Midpoint Dis-
placement shows a rocky shore. Fault Formation shows cliffs.
Perlin Noise shows mountains in an island.

4.6 Viewer Feedback
To further evaluate effectiveness of the algorithms, a survey
was conducted to 97 respondents. They were asked to rank
(1 to 3) the terrains (Figures 8-10,11-13,14-16) based on the
degree of resemblance to a certain type of terrain. A rank of
1 exhibits the most resemblance based on the user’s evalua-
tion. The respondents were not informed of the algorithms
used to generate the terrain. The ranks for each terrain type
are summed. Table 1 summarizes the results.

Figure 8: Mountain generated using Fault Forma-

tion.

Figure 9: Mountain generated using Midpoint Dis-

placement.

For mountains, the terrain generated by Fault Formation
was ranked highest by the respondents. On the other hand,
terrains generated by Midpoint Displacement for plains and
islands were ranked highest. Perlin Noise generated terrains
ranked low in all the types.

5. CONCLUSION
In general, the three algorithms can generate approxima-
tions of the target terrains. Visual quality, however, is still
the basis of how good a particular terrain is. Midpoint Dis-
placement is effective in rendering rough mountains. It is the
only algorithm, compared to the other two, that can make
mountain peaks. Smoothness is difficult to achieve using
Midpoint Displacement. Fault Formation generates visually
appealing terrains. Without filtering, stair-like terrains re-
sult. Perlin Noise is good in producing wave-like terrains.
Increasing the zoom parameter renders a smooth mountain.
It performs poorly when generating plains. Results of viewer
feedback showed that Fault Formation is best for generat-
ing mountains, and Midpoint Displacement for plains and
islands.

6. RELATED WORK
There have been several works in the literature about artifi-
cial terrain generation. Majority of which focus on develop-
ing new methods or improving existing algorithms. Others

Figure 10: Mountain generated using Perlin Noise.

Figure 11: Plain generated using Fault Formation.

work towards applications of artificial terrains in real-world
projects.

Using Midpoint Displacement, Olsen [5] focused on the ef-
fects of erosion in terrain. He presented ways to erode a
terrain by thermal and hydraulic erosion.

Koh [4] also used heightmaps implemented cellular automata
in his thesis. He was interested in stream erosion and its
effects in the rendered terrain. He considered three types of
landscape phenomena is his work which are stream erosion
on firm terrain, desert dune formation and transport and
accumulation of fallen snow.

Saunders [8] developed a system for integrating several height
fields to make new terrain. He used Genetic Algorithms
to combine different terrain features. This makes the final
terrain look more realistic because of the diversity in land
formations.

There are also existing applications for three dimensional
terrain generation. Terragen Classic[3], from Planetside,
is a scenery generator, created with the goal of generating
photo-realistic landscape images and animations. Terragen
2 is the improved version of Terragen 1 with the goal of
creating entire worlds from imagination or importing real
world terrain datasets to have the most realistic visualiza-
tions possible. User’s can control weather, landscape, rivers,

Figure 12: Plain generated using Midpoint Displace-

ment.

Figure 13: Plain generated using Perlin Noise.

lakes and oceans, suns, moons, and stars.

7. REFERENCES
[1] D. Astle and K. Hawkins. Beginning OpenGL Game

Programming. Premier Press, 2004.

[2] A. Fournier, D. Fussell, and L. Carpenter. Computer
rendering of stochastic models. Commun. ACM,
25(6):371–384, 1982.

[3] F. Inc. Planetside - home.
http://www.planetside.co.uk/, November 2009.

[4] A. Koh. Dramatic landscapes: Cellular automata
modeling of landscape phenomena. Technical report,
School of Computer Science and Software Engineering,
Monash University, 2004.

[5] J. Olsen. Real-time procedural terrain generation.
Technical report, Department of Mathematics and
Computer Science, University of South Denmark,
October 2004.

[6] E. Pazera. Focus on SDL. Premier Press, 2002.

[7] T. Polack and W. H. d. Boer. Focus on 3D Terrain
Programming. Premier Press, 2002.

[8] R. L. Saunders. Terrainosaurus: Realistic terrain
synthesis using genetic algorithm. Technical report,
Office of the Graduate, Studies of Texas AM
University, 2006.

[9] R. S. Wright and B. Lipchak. OpenGL SuperBible (3rd
Edition). Sams, Indianapolis, IN, USA, 2004.

Figure 14: Island generated using Fault Formation.

Figure 15: Island generated using Midpoint Dis-

placement.

Figure 16: Island genereated using Perlin Noise.

Table 1: Survey result.
Algorithm/Terrain Mountain Plain Island
Fault Formation 156 161 184

Midpoint Displacement 222 136 136

Perlin Noise 204 285 262

