
Parallel	Sessions	(Mathematical	and	Computational	Sciences	Cluster)

8th UPLB-CAS	Student-Faculty	Research	Conference	(2015	November 16) 		44

Is SystemOne “Slow”?
Rommel V. Bulalacao , Ivy Joy U. Aguila, Joseph Anthony C. Hermocilla

Institute of Computer Science
rvbulalacao@up.edu.ph, iuaguila@up.edu.ph, jchermocilla@up.edu.ph

SystemOne Decaf (S1) is a web application running on Linux-Apache-MySQL-PHP(LAMP) stack that
supports the student registration process of UPLB. It is accessed over the Internetand deployed using
the Client-Server application architecture. In this paper, we will answer the
frequently asked question by its main users, the students: Why is SystemOne “slow”?

It is easy to say that a system is slow. But it will be more convincing if it said with some quantitative
proof. Thus, in this work, we present some numbers that can quantifywhetherS1is indeed “slow”, or not.

We are interested in measuring the Quality of Service (QoS) of S1 which is defined in terms of response
time, throughput, and availability. This is done by loadtesting S1, sending requests that emulates the
behavior of the students during the peak of the registration period to the server via scripts, and obtaining
measurements. An overview of S1’s software architecture is presented to enumerate the different paths
taken by clients’ requests to the server, and back. These paths affect the QoS. We obtain measurements
for different system deployment configurations for comparison. The result of load testing can tell us the
best system configuration for S1 and more importantly it can tell us why it is slow or if it is indeed slow.
It can also give us some insights on how and where we can improve the system.

Initial results of our laboratory tests indicate that the main bottleneck is in the storage/database(MySQL)
component of S1. This result is validated by analysing logs obtained
from actual deployments of S1 for the past semesters.

Keywords: web application architecture, workload, quality of service, response time, throughput

Is SystemOne “slow”?

Rommel V. Bulalacao, Ivy Joy U. Aguila, Joseph Anthony C. Hermocilla
Institute of Computer Science

rvbulalacao@up.edu.ph, iuaguila@up.edu.ph, jchermocilla@up.edu.ph

Abstract

SystemOne Decaf (S1) is a web application running on Linux-Apache-MySQL-PHP(LAMP)
stack that supports the student registration process of UPLB. It is accessed over the Internet and
deployed using the Client-Server application architecture. In this paper, we will answer the
frequently asked question by its main users, the students: Why is SystemOne “slow”?

It is easy to say that a system is slow. But it will be more convincing if it said with some
quantitative proof. Thus, in this work, we present some numbers that can quantify whether S1 is
indeed “slow”, or not.

We are interested in measuring the Quality of Service (QoS) of S1 which is defined in terms of
response time and availability. This is done by load testing S1, sending requests that simulates the
behavior of the students during the peak of the registration period to the server, via scripts, and
obtaining measurements. An overview of S1’s software architecture is presented to enumerate the
different paths taken by clients’ requests to the server, and back. These paths affect the QoS. We
obtain measurements for different system deployment configurations for comparison. The result
of load testing can tell us the best system configuration for S1 and more importantly it can tell us
why it is slow or if it is indeed slow. It can also give us some insights on how and where we can
improve the system.

Initial results of our laboratory tests indicate that the main bottleneck is in the
storage/database(MySQL) component of S1. This result is validated by analysing logs obtained
from actual deployments of S1 for the past semesters.

Keywords: web application architecture, workload, quality of service, response time, throughput

Introduction

SystemOne Decaf (S1) is a Web application to support the registration process of UPLB. It runs
on a Linux-Apache-MySQL-PHP (LAMP) stack. In this paper, we will try to answer the
frequently asked question by its main users, the students: Why is SystemOne “slow”?

S1 is affected by the Slashdot/flash crowd effect especially during the peak of the registration
period. This makes the application virtually inaccessible, or as perceived by students as
“slow”[14][15]. Thus, in this work, we present some numbers that can quantify whether S1 is
indeed ‘slow’, or not. First, we give an overview of S1 application and deployment architecture.

S1 Application Architecture
The bulk of S1 is written in the PHP scripting language. Functionalities are implemented as
‘modules’ and there is a PHP class which serves as the application programming interface (API),
exposing and managing module execution. Majority of the domain-specific logic related to the
registration process are implemented as MySQL stored procedures and functions. Modules, when
executed by API, call these stored procedures through MySQL-related PHP functions, mysqli()
and mysqli_query() . What is sent back to the browser (HTML, Javascript, CSS, and images) is
generated by functions from the RModuleMgr class. Figure 1 shows the function call graph
when a user visits the index page. Some notable features of S1 include compression, javascript
and CSS minification, and caching[17].

Figure 1. Function call graph when visiting the index page of S1.

S1 Deployment Architecture
S1 deployment follows the client-server architecture. The client sends requests (for resources
such as HTML documents, images, scripts, etc.) to the server and the server sends responses the
client. Performance(response time) is usually a measure of how long it takes for the responses to
arrive to the client after a set of requests is sent. When the server receives a request and processes
it is called a hit . There can be multiple clients connecting to a single server. The client and the
server may be geographically separated in which case requests and responses will travel across a
network, usually over the Internet.

From the user’s end or client-side, S1 is accessed via a web browser, such as Mozilla Firefox or
Google Chrome, by typing S1’s web address(URL), http://systemone.uplb.edu.ph , on the address
bar. The browser sends HTTP[16] requests to the server (identified by the web address) hosting
the application. What the user sees are the resources or files (HTML, CSS, Javascript, images),
which are the responses to the requests, processed by the browser and displayed or rendered on
the screen.

At the back-end or server-side, there are a lot of things going on. Every request from the browser
will have to be processed by different subsystems or services. These include the base operating
system(Linux) network stack implementation, firewall(iptables), web server(Apache), the
server-side scripting engine(PHP), modules of S1 itself, and the database server(MySQL). Figure
2 shows the client-server deployment of S1.

Figure 2. The client-server architecture. Arrows represent the flow of data from the initial request (1) to the

final response (12). At (10), the dynamic content has been generated. Multiple Apache processes handle
multiple user requests.

Web Application Deployment Architectures
Although different Web applications would have different deployment requirements, S1 shares
features common to most Web applications. That is, end-users can view, create, update, and
delete a piece of information through its Web interface. Hence, it is prudent to compare its
deployment architecture against that of other Web applications. Figure 3 shows a typical
deployment architecture for web applications with emphasis on network topology. The presented
deployment architecture has three significant benefits: performance, reliability, and security.

Figure 3. Typical deployment architecture for web applications.

Performance
The primary goal of improving the performance of a Web application is to minimize the
perceived delay that the user experiences between initiating the interaction to seeing the result of
the initiated interaction. This perceived delay is affected by several factors, including the
application and deployment architectures.

We are interested in measuring the Quality of Service (QoS) of S1. This is measured in terms of
response time , throughput , and availability [1]. By load testing S1, we will be able to assess how
it will support its expected workload, especially during the registration period. This will be

accomplished by running a set of scripts that emulate the behavior of students as they use S1. At
the deployment’s end, system engineers will be able to assess the behavior of the application to
gain more information needed to tweak the setup. The parameters to vary in a load include
workload intensity , workload mix , and customer behavior patterns [1].

Methodology

The steps we took in this study is summarized below. Details are discussed in the subsections.

1. Prepare S1 version and dataset to use.
2. Create a basic S1 setup. Record interaction of students using JMeter[7].
3. Setup S1 using different deployment configurations.
4. Identify variables to measure (both client side and server side).
5. Run JMeter using recorded interactions to obtain baseline measurements[21]. Use data

derived past deployments to generate test workload.
6. Increase number of users and concurrent connections to simulate actual workload.
7. Analyze and evaluate results.

Dataset
The dataset used was retrieved at 8pm on August 2, 2015 from a live S1 deployment for the First
Semester AY 2015-2016.

Load Generation
In order to simulate the workload, we loaded the dataset to a two-server test setup then asked
ten(10) students to use S1 as they normally do during the registration period. We recorded the
students interactions with S1 using JMeter. These recorded interactions was then used as the
workload for the JMeter test plan. We also considered logging(on the server side using the
dumpio Apache module) everything during actual deployments in order to generate the actual
workload. However, we discarded this idea because doing so will further degrade the
performance due to high disk activity when writing logs.

We focused our evaluation on the login workflow. This workflow starts when, after landing on
the index page, the student enters the username and password then presses the login button. The
workflow is complete when the profile page of the student is fully loaded.

Server Configuration
As shown in Figure 2, the client-server architecture allows the different server-side components
to be placed on different servers. In the case of S1, these components are Apache and MySQL.
Through the years, S1 has been deployed with the following server configurations. In this study,
we used the Single-server Setup , using the same hardware used in the live deployment(aka
Rodolfo). SystemOne Operations Manual[10] was used to prepare this setup.

Single-server Setup
In the single-server setup we have one server that runs both Apache and MySQL. This setup was
used until the Second Semester AY 2014-2015 S1 deployment using bare-metal server[8 X
Intel(R) Xeon(R) CPU E5640 @ 2.67GHz, 32GB RAM, 53GB SSD w/ RAID 1].

Two-server Setup
In the two-server setup, one server runs Apache and another server runs MySQL. This setup was
used during the Mid-year AY 2014-2015 S1 deployment using virtual servers on the cloud[18].

Four-server Setup
In the four-server setup, we have one server running Nginx for load balancing, two servers for
Apache and one server for MySQL. This setup was used during the First Semester AY 2015-2016
S1 deployment using virtual servers on the cloud[18].

Metrics Collected
On the client side, the following metrics were obtained using JMeter for a given run:

Average: The average time(ms) of a set of results.
Median: The middle value for the response time(ms).
90th Percentile: 90% of the sample took no more than this time.
Median: Divides the samples into two halves.
Min: Shortest time for the run.
Max: Longest time for the run.
Error% : Error rate per run.

On the server side, the following metrics were obtained using custom scripts, sampling every
two(2) seconds for each test run:

mysql_processes: The amount of memory used by MySQL.
mysql_cpu : The percentage of the CPU used by MySQL.
apache_processes : Amount of memory used by the Apache.
system_mem_available : Amount of free system memory.

The following variables related to MySQL were also noted after each run:

aborted_clients : The total number of aborted connections.
queries_executed : The total number of queries executed.
queries_quitted : The total number of queries quitted.
slow_queries : The total number of slow queries.

S1 Post-deployment Web Server Statistics
We analyzed web server statistics from three deployments of S1 to provide additional inputs in
creating the test plan to determine the workload intensity. These statistics were generated by
awstats[11] from log files. From Table 1, 1st Semester 2015-2016 has the least number of hits.
This may be attributed to the filtering done by CloudFlare[19], which was used for the first time
on that semester.

Table 1. General statistics.

Semester Unique
Visitors

Number of
Visit

Pages Hits Bandwidth
(GB)

2nd Semester
2014-2015

(18-31 January
2015)

28,206 109,789 5,697,011 10,575,319 38.24

Mid Year
2014-2015
(11-24 June

2015)

18,304 36,547 2,061,920 3,676,543 30.03

1st Semester
2015-2016

(1-2 August
2015)

6,115 10,647 2,165,960 2,367,529 11.13

Table 2. Maximum values generated for a single day(24 hours) during a deployment.

Semester Max # of Visits Max # of Pages Max # of Hits (Average
Hits/second)

2nd Semester
2014-2015

(January19, 2015)

22,543 2,246,762 4,151,650 48

Mid Year
2014-2015

(June 23, 2015)

10,868 912,662 1,963,444 23

1st Semester
2015-2016

(August 1, 2015)

3,643 1,441,016 1,447,879 16

Number of Threads/Users per Test Computer
We measured the maximum number of threads/users per computer to have a 90th percentile of 10
seconds with no errors per run. Then we simultaneously run the tests by scheduling them to run at
a specified time.

There were five data sets tested on 18 computers: 100, 500, 1000, 1500, 2000. We concurrently
run each test by scheduling them to execute at a specified time. The goal is to at least simulate the
max number of visits per day which is 22,543 (refer on Table 2) and to see the trend with
different workloads on the server.

Results and Discussion

Baseline Measurements
Visiting the index page of S1 generates six(6) GET requests from the browser, with an average
payload size of 31KB. Firefox can use six(6) concurrent connections[13] for a single domain. As
shown in Figure 4, five(5) connections are used concurrently to generate the requests for the
resources in the index page. For the login workflow(Figure 5), ten(10) requests are sent to the
server. Some of the requests are non-viewable (redirects). Figures 6 and 7 shows requests when
index and login workflow are accessed outside of the campus.

Figure 4. Index(within campus network). It took 0.39s to complete.

Figure 5. Login(within campus network). It took 0.37s to complete.

Figure 6. Index(off- campus network). It took 8.28s to complete.

Figure 7. Login(off- campus network). It took 11.35s to complete.

At the server side, a single login generates the following MySQL statistics:

connections_established : 6
queries_quitted : 2
queries_executed : 8
aborted_clients : 4

Given the above data, 36,000 users who login will generate 360,000 hits if all requests were
successfully processed. As for the MySQL statistics, we simply multiply the values of the
variables with the number of users. However, this is the ideal scenario. The next section presents
the actual numbers.

Test Results
Figure 8 shows the actual number of requests sent by JMeter side by side with the received and
processed by the server. The figure shows that some of the samples did not reach the servers due
to some errors or reached the servers but encountered some errors while processing it. To
understand what happens we present data both on the client and server sides.

Figure 8. Actual Sample vs. Requests processed by the server

Client Side
Figure 9 shows the 90% Line trend per data size. It can be concluded here that, with 9000 users,
there will be a sudden increase of time to finish the Login request experienced by the 90% of the
users in comparison with 1800 concurrent users. With 1800 users, the 90% of the user finished
logging in within 5 secs while with 9000 users, the 90% line is 126.07 secs.

Figure 9. Average time each 90th percentile of the samples finished the request-response process

In Figure 10, the distribution of these errors for 36,000 and 18,000 users is shown.

Figure 10. Distribution of the requests status after the simulation as perceived in the client side

The following are the request results encountered by JMeter:
● OK - the request is served successfully.
● Connection Refused -
● Connection Reset - normally encountered every time there is an unsynchronized

connection between the client and server.
● Server Failed to Respond

In Figure 11, we compared the % error occurred for each page loaded for the login workflow. The
following were the six pages compared in the graph. The /systemone/ajax/processor.php?login
page occured to have the most % errors among all the pages listed above. This page is
dynamically generated.

● /systemone/ajax/processor.php?login
● /systemone/
● /systemone
● /systemone/
● /systemone/_auto-css/2113254676.css
● /systemone/_auto-js/2113254676.js

Figure 11. Encountered % Error per page of each sample size

Figure 12 shows the average elapsed time(ms) to complete the request-response process.

Figure 12. Average completion time per number of requests

Table 3 represents the above data:

Table 3. Average completion time per number of requests

No. of Samples (requests) Average Time (secs)

1,800 2.091

9,000 36.395

18,000 56.342

27,000 65.524

36,000 71.931

Server Side
Figure 13 shows the total system memory consumed. Even if there are 36,000 concurrent users
accessing the server, there is still enough available memory to run the server.

Figure 13. Total system memory consumed

In Figure 14, Apache limit(approximately 6000 processes) has been reached with the data size
starting at 18,000 concurrent users and above.

.

Figure 14. Maximum apache processes encountered for each sample

Figure 15 shows the statistics for MySQL for each set of requests. The number of slow queries
and quitted queries tends to become constant(40,000), at around 39000, as the number of requests
increases.

Figure 15. Queries executed, aborted clients, queries quitted, and slow queries per sample size

Figure 16[20] shows the network traffic from the laboratory network where the test was
conducted at about 16:00-20:00. The test was conducted with other students also accessing the
network because of regular classes. Outbound traffic represents the traffic containing requests
which peaked to 30Mbps. The largest number of concurrent requests(36000) was made at around
18:45-19:15, with about 6Mbps traffic generated.

Figure 16. ICS Laboratory network traffic during the time of experiment

Related Work

The work of Menascé gives an overview of load testing web applications[1]. Anderson discussed
some common mistakes in load testing applications[2]. Shaw conducted a study to assess the
performance of an online learning application[3]. Benchmarking solutions exist for such as
TCP-W[4] and others[5] exists. Characterizing workload has been studied by Arlitt[6].

Conclusion and Future Work

In conclusion, given the Single-Server Setup , with 9000 users, there will be a sudden increase of
time to finish the login request experienced by the 90% of the users in comparison with 1800
concurrent users. With 1800 users, the 90% of the users finished logging in within 5 secs while
with 9000 users, the 90% line is 126.07 secs.

Acknowledgment

We would like to thank our colleagues and students for their suggestions and comments.

References

[1] D. Menascé and others, “Load testing of web sites,” Internet Computing, IEEE , vol. 6, no. 4,
pp. 70–74, 2002.
[2] M. D. Anderson, “The top 13 mistakes in load testing applications,” Software Testing and
Quality Engineering Magazine , vol. 1, no. 5, pp. 30–41, 1999.
[3] J. Shaw, “Web application performance testing—a case study of an on-line learning
application,” BT Technology Journal , vol. 18, no. 2, pp. 79–86, 2000.
[4] W. D. Smith, TPC-W: Benchmarking an ecommerce solution . 2000.
[5] C. Amza, A. Chanda, A. L. Cox, S. Elnikety, R. Gil, K. Rajamani, W. Zwaenepoel, E.
Cecchet, and J. Marguerite, “Specification and implementation of dynamic web site benchmarks,”
in Workload Characterization, 2002. WWC-5. 2002 IEEE International Workshop on , 2002, pp.
3–13.
[6] M. F. Arlitt and C. L. Williamson, “Internet web servers: Workload characterization and
performance implications,” IEEE/ACM Transactions on Networking (ToN) , vol. 5, no. 5, pp.
631–645, 1997.
[7] “Apache JMeter - Apache JMeterTM.” [Online]. Available: http://jmeter.apache.org/.
[Accessed: 05-Nov-2015].
[10] Systemone Operations Manual.2015.
[11] “AWStats - Free log file analyzer for advanced statistics (GNU GPL).” [Online]. Available:
http://www.awstats.org/. [Accessed: 06-Nov-2015].
[12] “Using Apache Bench and getting meaningful results.” [Online]. Available:
http://tales.itnobody.com/2011/12/ab-apache-bench-understanding-and-getting-tangible-results.ht
ml. [Accessed: 07-Nov-2015].
[13] “Developers Corner: Maximum concurrent connections to the same domain for browsers.”
[Online]. Available:
http://sgdev-blog.blogspot.sg/2014/01/maximum-concurrent-connection-to-same.html.
[Accessed: 07-Nov-2015].
[14] “Slashdot effect - Wikipedia, the free encyclopedia.” [Online]. Available:
https://en.wikipedia.org/wiki/Slashdot_effect. [Accessed: 10-Nov-2015].
[15] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. E. Long, “Managing flash crowds on
the Internet,” 2003, pp. 246–249.
[16] [Online]. Available: http://www.w3.org/Protocols/rfc2616/rfc2616.txt. [Accessed:
10-Nov-2015].
[17] “memcached - a distributed memory object caching system.” [Online]. Available:
http://memcached.org/. [Accessed: 12-Nov-2015].
[18] “Simple Cloud Infrastructure for Developers | DigitalOcean.” [Online]. Available:
https://www.digitalocean.com/. [Accessed: 12-Nov-2015].
[19] “CloudFlare | CloudFlare | The web performance & security company.” [Online]. Available:
https://www.cloudflare.com/. [Accessed: 12-Nov-2015].
[20] UPLB Information Technology Center.

[21] “How To Use JMeter To Record Test Scenarios | DigitalOcean.” [Online]. Available:
https://www.digitalocean.com/community/tutorials/how-to-use-jmeter-to-record-test-scenarios.
[Accessed: 20-Nov-2015].

NOTES:

[8] “ab - Apache HTTP server benchmarking tool - Apache HTTP Server Version 2.2.” [Online].
Available: https://httpd.apache.org/docs/2.2/programs/ab.html. [Accessed: 05-Nov-2015].

Simulating Denial-of-Service (DoS) Attacks
DoS sends request at vast speeds and amount that it prevents legitimate users from accessing S1.
We simulate DoS by running Apache Bench(ab)[8] simultaneously while running the JMeter test
plan. ab runs access the index page of S1 only to simulate directed attacks.

of
users/thre

ads

Pages Hits Bandwidth
(KB)

Average
Response

Time
(ms)

90th
Percentile

(ms)

Average
Throughput

(req/sec)

Average
Through

put
(KB/sec)

1 1 6 77.77 477 795 2.1 26.7

10 10 60 721.79 1898 4856 3.9 50.95

Table 1. Machine configuration for servers used in the study.

Hostname Flavor Purpose IP Addresses

s1apache-sfrc2

Ubuntu-14.04-server-amd64,
1 VCPU, 512MB RAM, 20GB Disk

2nd Apache/PHP5 192.168.0.15

s1nginx-sfrc

Ubuntu-14.04-server-amd64,
1 VCPU, 1GB RAM, 20GB Disk

NGINX as
proxy/load
balancer

192.168.0.14
10.0.3.247

s1apache-sfrc

Ubuntu-14.04-server-amd64,
1 VCPU, 512MB RAM, 20GB Disk

1st Apache/PHP5
server

192.168.0.13

s1db-sfrc

Ubuntu-14.04-server-amd64,
2 VCPU, 1.5GB RAM, 20GB Disk

MySQL DB server 192.168.0.12
10.0.3.245

Hardware

Single Server (Rodolfo)

RAM 32 GB

Hard
Disk

53 GB w/ RAID 1
INTEL SSDSC2CT06 (SSD)

CPU 8 X Intel(R) Xeon(R) CPU
E5640 @ 2.67GHz

Software
Technology Used

WebServer Apache 2.2.22-13

Database MySQL
5.5.31+dfsg-0+wheezy1

Operating System Debian 7.1 Wheezy

Scripting Language Used PHP 5.4.4-14+deb7u2

The SystemOne Application has the following user roles:
● Administrator
● Department Head
● Enlistor
● Student

The SystemOne Application currently has the following modules/pages:
All Users
● Home Page
● Index
● Search
● Login(?)

Students

● Manage Profile
● Dream Schedule
● Problem Resolution
● Straggler’s Time
● Change of Matriculation
● View Mini Checklist

Enlistor
● Enlistor App
● View Mini Checklist

Department Head

● Add Slots
● Classlist

Administrator
● Problem Manager
● Add Student
● Menu Manager
● Account Manager
● Role Manager
● Manage Announcements
● Content Manager
● Site Status
● Search Student

Testing Tools
● JMeter
● Profiler
● MySQL Tuner
First we create a baseline measurement using a single client accessing the application. We
measure the response time when a user access each module. blah blah blah

Machine Name Flavor Purpose IPaddress

s1apache-sfrc2

Ubuntu-14.04-server-amd64,
1 VCPU, 512MB RAM, 20GB
Disk

2nd Apache/PHP5 192.168.0.15

s1nginx-sfrc

Ubuntu-14.04-server-amd64,
1 VCPU, 1GB RAM, 20GB Disk

NGINX as proxy/load
balancer

192.168.0.14
10.0.3.247

s1apache-sfrc

Ubuntu-14.04-server-amd64,
1 VCPU, 512MB RAM, 20GB
Disk

1st Apache/PHP5
server

192.168.0.13

s1db-sfrc

Ubuntu-14.04-server-amd64,
2 VCPU, 1.5GB RAM, 20GB Disk

MySQL DB Server 192.168.0.12
10.0.3.245

