
2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 1

Eucalyptus LSS: Load-Based Scheduling on Virtual
Servers Using Eucalyptus Private Cloud

Shenlene A. Cabigting and Joseph Anthony C. Hermocilla

Abstract— The University of the Philippines Los Baños cur-
rently offers a number of applications to its students and staffs.
However, a limited number of servers and hundreds of users
accessing different services at the same time would results to
heavy traffic and a huge response time. A private cloud was
setup to enable easy and flexible deployment of virtual servers
within the network using Eucalyptus Private Cloud. A load
balancer was deployed in the cloud to properly distribute task
among the virtual servers, provide faster response time and
prevent the possibility of data lost due to server failure. The
load balancer was developed using Java and is composed of
four classes: MyServlet, Balancer, Server and Request. The load
balancing scheme used took into consideration not only the
load and capacity of the servers but also the resources needed
by each incoming request. A graphical web interface was also
provided for the network administrator to visualize and monitor
the current status of each virtual machine in the cloud.

Index Terms— Eucalyptus, cloud computing, load balancing,
virtualization, server scheduling

I. INTRODUCTION

A. Background of the Study

Cloud computing, while still at its early stage, is already
making a scene in the Information Technology (IT) industry.
Continuous development in high-speed broadband internet
enables this new technology to offer possibilities to both its
end-users and service providers.

Cloud computing is the means by which services can
easily and conveniently be accessed from a shared pool of
configurable computing resources through the internet or a
local area network [1]. These resources make up what is
known as the cloud and consist of both the hardware and the
software in the datacenters from which services are provided
[2]. A cloud user must send a request to the cloud to access
these services. Whenever such request is granted, a fraction of
the cloud is provisioned to the requesting user and will remain
dedicated to that user until it is released [3].

One way of classifying clouds is based on the portion of the
resources delivered as a service. They are referred to as the
three service models namely: Software as a Service (SaaS),
Platform as a Service (PaaS) and Infrastructure as a Service
(IaaS). They are also sometimes referred to as the cloud layers
where IaaS is the lowermost layer.

SaaS provides the user access to applications deployed in
the providers cloud infrastructure through a client interface and

Presented to the Faculty of the Institute of Computer Science, University
of the Philippines Los Baños in partial fulfillment of the requirements for the
Degree of Bachelor of Science in Computer Science

is often referred to as Software on Demand. In this service
model, the user has no control over the underlying cloud
infrastructure. PaaS provides the user the ability to create,
manage and/or control applications in the cloud. These appli-
cations can either be created by the user or acquired from other
services as long as they are supported in the cloud environment
of the service provider. IaaS provides the user with their own
virtual cluster on which they can provision processing, storage,
networks and other fundamental computing resources and on
which they can deploy and run applications and even operating
systems. [1]

Another way of classifying clouds is based on the nature
of access and control with respect to how the provisioned re-
sources will be used [3]. This classification is more commonly
known as the deployment models and includes the following:
private, community, public and hybrid. Private cloud refers
to the internal datacenter of a company or organizations
sharing the same concerns. These organizations may have the
same policy, security requirements, compliance considerations,
etc. The public cloud infrastructure, unlike the first two
deployment models mentioned, is made available to the public
and is usually owned by companies or organizations selling
cloud services. A hybrid cloud is the resulting infrastructure
when two or more of the other deployment models (private,
community and public) are combined. In this deployment
model, each cloud component remains unique yet they are
bound together by a standardized technology. [1]

One key characteristic of cloud computing is scalability. A
cloud must be able to accommodate rapid increase or decrease
in demands and elastically scale in or scale out computing
resources based on these demands [3]. Applications deployed
on a cloud should be available to any number of users at any
time. To achieve this goal, virtualization and load balancing
must be supported in every cloud.

Virtualization is the ability to run instances of virtual ma-
chines (VM) on top of a hypervisor. A hypervisor provides a
uniform abstraction of the underlying physical machine allow-
ing multiple VMs to execute simultaneously. [3] Virtualization
provides the cloud the flexibility to allocate and deallocate
computing resources to satisfy user requests. Load balancing,
on the other hand, is the process of transparently and efficiently
distributing user requests to the number of available servers
[4]. With these two working hand in hand, cloud computing
creates the illusion of an infinite computing resources available
on demand to the users at any time [2].

c© 2012 ICS University of the Philippines Los Baños



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 2

In this study, IaaS was deployed as a private cloud to suit
the University of the Philippines Los Baños (UPLB) envi-
ronment. The study aimed to provide better traffic handling
to the UPLB network and thus, its major concerns include
both virtualization and load balancing. Since load balancing
is not yet supported in most open source cloud computing
platforms, a load balancer was developed using Java and
was deployed in Eucalyptus Private Cloud. Elastic Utility
Computing Architecture for Linking Your Programs to Useful
Systems (EUCALYPTUS) is an open source cloud computing
platform that can be installed on most Linux-based systems
and is compatible with the Amazon EC2 and S3 Cloud API
[5].

B. Statement of the Problem

UPLB currently offers a number of services to the university
students and staffs. These include courses@UPLB, UPLB
Webmail, UPLB SystemOne, UPLB Payroll Services, UPLB
iLib, etc. Like most applications today, these services require
processing power which can no longer be provided by a
single server. A limited number of servers and hundreds of
users accessing different services at the same time would
result to heavy traffic and a huge response time. The solution
is to deploy additional servers to the UPLB network. This,
however, would be too costly and is not always feasible for
the university. A load balancer for the UPLB network must
be developed to handle this traffic and provide faster response
time for the users. To solve the problem regarding the limited
number of servers, the load balancer must be deployed in a
private cloud where instances of virtual servers can be added
and removed with ease through horizontal scaling.

Load balancing is one of the key functionalities of cloud
computing but since most open source cloud computing plat-
forms currently do not support load balancing, open source
cloud developers must each develop their own load balancers.

C. Significance of the Study

With a load balancer deployed in a private cloud, requests
to applications were scheduled more efficiently to the most
capable server depending on its availability and capacity in
handling such requests. Better scheduling resulted to a lighter
traffic within the network which, in turn, provided faster
response time to applications and easier access to users.

Load balancing and virtualization also provided better risk
management to the network. The load balancer helped pre-
vent the possibility of data lost due to server failure by
automatically redistributing requests to the next most capable
server within the network. With load balancing, a faulty server
can be removed from the network without compromising the
performance of the other servers.

The study also aimed to contribute to the development of
Eucalyptus and provide a load balancing feature to future open
source developers.

D. Objectives of the Study

The main objective of this study is to create a system
that would provide better traffic handling within the UPLB

network, provide faster response time to the users and prevent
the possibility of data lost due to server failure.

The study specifically aimed to:

1) Setup a private cloud on which the system will be
deployed;

2) Use load-based load balancing scheme to better dis-
tribute requests to the servers; and

3) Provide a graphical web interface to enable the adminis-
trator to view the status of the traffic within the network.

E. Dates and Place of the Study

This study was conducted in the Institute of Computer
Science, College of Arts and Sciences, UPLB from November
2011 to March 2012.

II. REVIEW OF RELATED LITERATURE

Cloud computing is a relatively new field of study in
computer science and its applications are still currently being
developed. Very limited literature about this field is available
on the internet and on printed materials and even less about
load balancing since this feature is not readily available on
most open source cloud computing platforms.

OpenNebula is an open source cloud computing platform
suitable for building private, public and hybrid clouds. It was
developed in 2005 by Llorente and Montero. [6] OpenNebula
has no built-in load balancing feature and relies on its match
making scheduler (mm sched) in distributing task assignments.
mm sched implements the Rank Scheduling Policy where
resources most suitable for a VM are first prioritized by that
VM. This scheduling framework is designed to be highly
modifiable and can easily be replaced by other developments.
[7]

Eucalyptus is the most widely deployed cloud computing
platform for building private clouds. It was developed in
2007 by Wolski. Eucalyptus is open source and is open for
contributions from outside developers. This cloud computing
platform currently does not support load balancing. To achieve
load balancing in Eucalyptus, developers must each develop
their own load balancer and run it in the Front End of their
cloud setup. [7]

Nimbus, AbiCloud and vSphere are cloud computing plat-
forms developed in 2009 [6]. Nimbus offers Infrastructure as
a Service (IaaS) and was developed by Keahey. AbiCloud was
developed by Abiquo. It is suitable for building and managing
private and public clouds. vSphere is highly specialized in vir-
tualization and was developed by VMWare. [8] None of these
three cloud computing platforms supports load balancing.

Load balancing is one of the key functionalities of cloud
computing but it is evident that most open source cloud
computing platforms currently does not support this feature.
In this study, a load balancer for Eucalyptus was developed.
Since Eucalyptus is the most highly deployed open source
cloud computing platform, it was expected that this study will
prove helpful for future open source cloud developers.



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 3

III. THEORETICAL FRAMEWORK

A. Virtual Machine (VM)

A VM is a software implementation of a machine that
does the same functionalities as its physical counterpart. It
has its own kernel, operating system, supporting libraries
and applications. [3] A VM does not physically exist and is
created within another environment to execute an instruction
set different than that of the other environment [9].

B. Horizontal Scaling

In horizontal scaling, machines (physical or virtual) are
added to the cluster to allow multiple simutaneous processing
and distributed workload. Compared to vertical scaling, bet-
ter risk management is exhibited in horizontal scaling since
information does not depend on a single server. [10]

IV. METHODOLOGY

A. System Requirements

For this study, the following tools were used:
• Two (2) units of machine
• CentOS 5.6
• Eucalyptus 2.0.3 32-bit CentOS 5 RPMs
• Euca2ools 1.3.1
• Java OpenJDK 1.6.0
• Apache 2 Web Server
• Apache Tomcat 7
• Xen Hypervisor 4.1.1
• JQuery 1.5.1

B. Private Cloud Setup

Eucalyptus Cloud has three major components: Cloud Con-
troller, Cluster Controller and Node Controller. Cloud Con-
troller serves as the brain of the cloud and is responsible
for the ”logic decisions” of the cloud. Cluster Controller is
responsible for determining the current state and availability
of VMs running in its corresponding cluster in the cloud. A
cloud setup may consist of several Cluster Controllers, each
of which is a collection of several Node Controllers. Node
Controllers have direct access to the VMs and are responsible
for their initialization and termination. [9] In this study, only
one Cluster Controller and one Node Controller were used.
Relationship among the components can be further understood
in the following figure.

Two units of machine were setup in one of the Computer
Laboratories of the Institute of Computer Science. One ma-
chine acted as the Front End, the other as the Compute Node.
The Front End was the machine controlling the cloud and
was the administrators access to the cluster. The Compute
Node was where VM instances were run. Both machines were
installed with CentOS 5.6 as their operating system. Both were
connected to a local area network (LAN) for them to function
as a cluster.

The Front End has one network interface (eth1) which was
connected to the LAN. The Front End was installed with Java
OpenJDK 1.6.0. The Cloud Controller, Cluster Controller and

Fig. 1. Private Cloud Setup with One Cluster Controller and One Node
Controller

Storage Controller packages were also installed to the Front
End together with Walrus and Euca2ools 1.3.1.

The Compute Node has one network interface (eth0) which
was connected to the Front End through the LAN. It was
installed with Xen Hypervisor 4.1.1 and the Node Controller
package.

Eucalyptus offers four different networking modes: MAN-
AGED, MANAGED-NOVLAN, SYSTEM and STATIC.
MANAGED and MANAGED-NOVLAN modes provide the
same set of networking features: connectivity, IP control, se-
curity groups, elastic IPs, metadata service and VM isolation.
The only difference between the two is that in MANAGED
mode, the underlying physical machine must be VLAN clean
meaning the network must provide Virtual LANs (VLANs)
usable by Eucalyptus. In STATIC and SYSTEM modes, con-
nectivity and metadata service were supported but the other
networking features were not. In these modes, VM instances
appear as physical machines on the physical network. [11]

For this study, the cloud must support IP control, security
groups, elastic IPs and VM isolation. Since the physical
network did not pass the ”VLAN Clean Test”, MANAGED-
NOVLAN mode was used.

C. Load Balancing

The load balancer was implemented using four Java classes:
MyServlet, Balancer, Server and Request. Apache 2 Web
Server and Apache Tomcat 7 were installed to the Front End
to house the load balancer.

MyServlet is an extension of the Java HttpServlet class and
uses the doGet and doPost methods to receive incoming GET
and POST HTTP requests. Balancer is in charge of the actual
load balancing on running VMs in the cloud. It creates and
terminates VM instances using euca2ools commands depend-
ing on the amount of incoming requests. A Server instance



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 4

is created and terminated with each VM instance and serves
as Balancer’s interface to the actual VMs in the cloud. A
Request instance is created with each incoming request. It uses
threads to monitor the status of the request paired with it and
terminates itself once the said request has been served.

The load balancing scheme used was summarized in the
following figure.

Fig. 2. Load Balancing Scheme Used for Eucalyptus LSS

Initially, a Balancer instance (Balancer) is created by My-
Servlet. Balancer will automatically check whether there are
running VM instances in the cloud using the euca2ools com-
mand euca-describe-instances. If no VM instance is present,
Balancer will call euca-run-instance to create a new VM in-
stance in the cloud. MyServlet must wait for that VM instance
to be in ”running” state before it starts receiving requests. The
first VM instance created will receive all incoming requests
until the Balancer instance creates another one. A threshold
(upper limit) is set by the administrator to determine when
to create a new VM instance. Balancer checks the total load
of the running VMs and compares it to the threshold. A
new VM instance is created once the threshold is reached.
On the same note, Balancer may terminate a VM instance if
there is light traffic in the network. For this case, Balancer
determines the VM instance with the heaviest load and marks
it for termination. Balancer must wait for that VM instance to
serve all its pending requests before terminating it using euca-
terminate-instances. A threshold (lower limit) is also set by the
administrator to determine when to terminate VM instances
from the cloud.

D. Graphical Web Interface

The graphical web interface was developed using basic
HTML, JQuery 1.5.1 and PHP 5. It was hosted on the Front
End using Apache 2 Web Server. Basically, the graphical web
interface is divided into two parts: the Monitor Tab and the
Configurations Tab.

The Monitor Tab provides the administrator with real-time
updates from the cloud. A PHP script executes the Eucalyptus
command euca-describe-instances and parses its output to
provide a visual representation of the status of each running
VM instance in the cloud. Another PHP script fetches and
displays information from the log files generated by the load
balancer.

The Configurations Tab enables the administrator to change
the value of the parameters used by the load balancer. These
parameters are as follows: upper limit, lower limit, maximum
capacity for each VM type and amount of resources to allocate
to each request. It should be noted that these parameters are
crucial to the load balancing process and changing their values
would greatly affect the results of the operation. Data are
stored in a configuration file in the Eucalyptus directory.

E. Testing

RequestSender was developed using Java to automatically
send requests to the cloud. It has a graphical user interface
(GUI) in which it takes URL as input. Once started, Request-
Sender floods that URL with HTTP requests and displays the
responses from the receiving servers.

V. RESULTS AND DISCUSSION

A. Cloud Setup

Two units of machine were setup in one of the Computer
Laboratories of the Institute of Computer Science. Both were
installed with CentOS 5.6 as their operating system. The Front-
End was assigned with IP address 10.0.5.176, the Compute
Node with 10.0.5.172. Eucalyptus and all its dependencies
were successfully installed to both machines. Walrus and
Euca2ools 1.3.1 were successfully installed to the Front End.

MANAGED-NOVLAN mode was used with the following
configurations:

• VNET MODE = ”MANAGED-NOVLAN”
• VNET SUBNET = ”192.168.0.0”
• VNET NETMASK = ”255.255.0.0”
• VNET DNS = ”172.0.0.1”
• VNET ADDRSPERNET = ”32”
• VNET PUBLICIPS = ”10.0.5.10 - 10.0.5.14”
IP addresses 10.0.5.10, 10.0.5.11, 10.0.5.12, 10.0.5.13 and

10.0.5.14 were reserved to be dynamically allocated to the VM
instances.

B. Virtual Machine

Customized VM images were created. One was installed
with Apache 2 Web Server and PHP 5. UPLB iList was
included with the image to serve as a test application. Another
VM image was installed with Apache 2 Web Server, Apache
Tomcat 7 and Java OpenJDK 1.6.0. Java servlets were included
to serve as test applications.

The customized images were successfully uploaded to the
cloud together with a kernel/ramdisk pair from Eucalyptus.
VM instances were successfully created from the VM images
using the kernel/ramdisk pair.



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 5

Fig. 3. UPLB iList Uploaded to the Cloud

Fig. 4. Eucalyptus LSS Test Page at 10.0.5.10

C. Load Balancing

The thresholds were set to 70% for the upper limit and 30%
for the lower limit. Maximum capacity for m1.small VM type
is set to 50%. The amount of resource to allocate to each
request is set to 2%.

An initial VM instance was successfully created after the
load balancer was started. It was assigned with public IP
address 10.0.5.10. Requests to the cloud were successfully
redirected to the VM instance.

Fig. 5. Eucalyptus LSS with One Running VM Instance

The cloud was flooded with HTTP requests using Request-
Sender and another VM instance was successfully created. It
was assigned with public IP address 10.0.5.11. Requests to the
cloud was successfully divided between the two VM instances.

After the flooding, one of the VM instances was terminated
by the load balancer. The other one was to be kept running
until the administrator stops the cloud services.

Fig. 6. Eucalyptus LSS with One Pending and One Running VM Instance

D. Log Files

Messages were sent by the load balancer during critical
stages in its operation. These messages were successfully
stored as log files in the Eucalyptus directory.

E. Graphical Web Interface

The graphical web interface was successfully developed and
was successfully deployed to the Front End. A login page was
provided to prevent non-administrators from viewing and/or
modifying the status of the cloud. Login information is stored
in an encrypted text file in the Eucalyptus directory.

Fig. 7. Eucalyptus LSS Login Page

Status of each running VM instance in the cloud was
successfully displayed in the Monitor Tab using the follow-
ing convention: a green light in the server image indicates
”running” state, yellow light indicates ”pending” and red light
indicates either ”shutting down” or ”terminated” state. Private
and public IP addresses of each running VM instance were
also displayed.

The Configurations Tab was successfully created. Changes
in the values of the parameters were successfully stored in a
configuration file in the Eucalyptus directory.



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 6

Fig. 8. Eucalyptus LSS Configurations Tab

VI. CONCLUSION AND FUTURE WORK

Eucalyptus LSS is a load balancer designed to handle
incoming HTTP requests and distribute them among VM
instances in a private cloud setup. The load balancing scheme
used took into account the capacity and the current load of
each VM and the resources needed by the requests. In doing
so, a better traffic handling is achieved. Security issues were
also addressed in this study. Virtualization of services keeps
intact the original data and thus they are safe even after a
server failure.

Future development may improve Eucalyptus LSS by pro-
viding an Applications Tab in the graphical web interface
to allow the administrator to view the applications supported
by the cloud and define the amount of resources needed by
each application. A functionality to change the administrator’s
password will also prove beneficial.

ACKNOWLEDGMENT

Shenlene A. Cabigting offers her sincerest gratitude to her
adviser, Prof. Joseph Anthony C. Hermocilla, for guiding
her throughout her Undergraduate Special Problem with his
patience and knowledge; to the Institute of Computer Science,
University of the Philippines Los Baños for providing her
with two units of machine and permitting her to work in one
of the PC Laboratories of the Institute; to her good friend
Mr. Christian John M. Lo for his remarks and suggestions; to
Mr. Pelayo and Mr. Jusay of the Institute for always assisting
her while working in the PC Laboratory; to the Open Source
community for providing her the tools that she used in this
study; to her family and friends for the unwavering love and
support; and lastly, to God for always giving her strength to
accomplish all her endeavours.

REFERENCES

[1] P. Mell and T. Grance. (2011) The nist definition of cloud comput-
ing. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwnski, G. Lee, Gunho, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. (2009) Above the
clouds: A berkeley view of cloud computing. [Online]. Available:
http://www.eecs.berkeley.edu/Pub/TechRpts/2009/EECS-2009-28.pdf

[3] Learn about cloud computing. [Online]. Available:
http://open.eucalyptus.com/learn

[4] Extreme networks server load balancing. [Online]. Available:
http://www.ibscentre.com.my/ibsweb/components/com eform/views/form
/tmpl/download.php?file type=application/pdf&file name=
IBS Training.pdf

[5] What is eucalyptus. [Online]. Available:
http://open.eucalyptus.com/learn/what-is-eucalyptus

[6] R. Banacia and C. A. Belaguin, “Billing system: An accounting solution
for the private cloud with eucalyptus,” University of the Philippines Los
Baños Technical Report.

[7] Scheduling policies 2.0. [Online]. Available:
http://www.opennebula.org/documentation:archives:rel2.0:schg

[8] L. MacVittie. (2009) Load balancing is key to successful
cloud-based (dynamic) architectures. [Online]. Available:
http://devcentral.f5.com/weblogs/macvittie/archive/2009/01/23/load-
balancing-is-key-to-successful-cloud-based-dynamic-architectures.aspx

[9] A. Desai. (2007) Virtual machine (vm). [Online]. Avail-
able: http://searchservervirtualization.techtarget.com/definition/virtual-
machine

[10] (2010) Horizontal scaling. [Online]. Avail-
able: http://download.oracle.com/docs/cd/E195583-01/819-
2582/addcd/index.html

[11] R. McCarty. (2009) Setting up cloud computing with eucalyptus. [On-
line]. Available: http://searchenterpriselinux.techtarget.com/tip/Setting-
up-cloud-computing-with-Eucalyptus

Shenlene A. Cabigting is an undergraduate student
under the BS Computer Science program of Institute
of Computer Science, University of the Philippines
Los Baños and a scholar of the Department of
Science and Technology for the past four years. She
is a proud member of the Young Software Engineers
Society and was the organizations Liaison Officer for
the Academic Year 2011-2012.


