
Characterization and Classification of Malware Traffic over the
Tor Network

Marie Betel B. de Robles, Joseph Anthony C. Hermocilla, and Jaderick P. Pabico
Institute of Computer Science, College of Arts and Sciences
University of the Philippines Los Baños, College, Laguna

{mbderobles2,jchermocilla,jppabico}@up.edu.ph

ABSTRACT
Tor is a popular anonymity tool for digital-based communication
that is used to protect the users’ identity and is also utilized to
avoid any eavesdropping and man-in-the-middle attacks. It imple-
ments the concept of onion routing where traffic is being routed to
relay nodes which hide users’ identity and secure the data being
transferred over the internet. As its use increases among internet
users, there is a need to monitor the traffic within Tor to ensure
that it is not being misused. There are a number of ways Tor is
used for malicious purposes, one of which is to hide malware traffic.
Since Tor traffic is encrypted, traditional approaches such as port
examination and packet inspection are ineffective. In this study, the
automatic classification of Tor web traffic into malware and non-
malware types was conducted using machine learning approaches.
A dataset of positive and negative malware web traffic examples
was generated from VirusTotal’s malware applications and regular
web traffic. The dataset was generated from a controlled network
environment using an automated system that was developed in this
work. Various machine learning (ML) techniques were employed
to evaluate their respective effectiveness in classifying between
malware and non-malware Tor traffic. The ML considered were
C4.5 variant of decision tree, K-nearest neighbors, Naive Bayes, and
Random Forest. The ML respective effectiveness in classification
were evaluated against the classification metrics Precision, Recall,
False Positive Rate, and False Negative Rate using a standard statis-
tical analysis of variance (ANOV) procedure. ANOV results show
that the MLs respective performances in evaluating the metrics
are not statistically different from each other at a significance of
α = 0.05.

CCS CONCEPTS
• Security and privacy→ Network security;

KEYWORDS
Malware, Tor, Flows, Machine Learning
ACM Reference Format:
Marie Betel B. de Robles, Joseph Anthony C. Hermocilla, and Jaderick P.
Pabico. 2020. Characterization and Classification of Malware Traffic over
the Tor Network. In Proceedings of Philippine Computing Science Congress
(PCSC2020). Baguio City, Philippines, 10 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PCSC2020, January 2020, Baguio City Philippines
© 2020 Copyright held by the owner/author(s).

1 INTRODUCTION
The internet has been continuously evolving and expanding its
reach to people’s everyday lives. Today, users can access new ideas
and information and perform activities because innovations in
communication, information sharing, education, and other related
technologies can be easily utilized. As the use of internet is in-
creasing, anonymity while on it became one of the most appealing
services for some users. Encrypting information about users’ ac-
tivities allows users to exercise freedom of speech, avoid network
surveillance, and seek discomfiting information. There are many
ways for users to obtain anonymity on the internet, one of which
is through Tor.

Tor is a popular anonymous proxy tool that is being used by
millions of users worldwide. It protects users’ data using the onion
routing concept where data is wrapped in multiple layers of en-
cryption. As it was originally developed for protecting government
communications, it is now being used by a wide range of users such
as journalists, activists, business executives, and others who prefer
to protect their identities while exchanging data and communicat-
ing over the internet. It also hosts hidden services accessible only
through the Tor network itself [3].

Userswithmalicious intent have also become attracted to anonymity
tools like Tor. Today, numerous unlawful services and activities are
being conducted over an encrypted network. Even malware has
also utilized encryption for its communication [8]. In the study by
Anderson et al. [6], about 10% of their collected malware communi-
cation samples were encrypted. For example, the malware Locky is
a ransomware that prompts the victim to visit a Tor hidden service
to pay the ransom and retrieve stolen files [7]. Since Tor can be used
by anyone, attackers can easily hide any malware tracks through it.
This threat makes it important to monitor Tor traffic to determine
if its use is for malicious purposes.

Traditional traffic classification approaches such as Deep Packet
Inspection (DPI) and signature-matching are ineffective over en-
crypted traffic. Today, machine learning (ML) techniques are being
applied where the features used are derived from statistical charac-
teristics of internet traffic [23]. Certain classes of applications hold
these unique features and are used in ML algorithms for traffic clas-
sification. This study aims to classify Tor web traffic into malware
and non-malware types and to develop a computational workflow
that can classify malware traffic over the Tor network through ML
approaches.

2 RELATEDWORK
Several works have already been done to analyze Tor traffic but
only a few studies in malware detection.

Computing Society of the Philippines, Inc. PCSC2020, March 2020, Baguio City, Philippines

Page 78



Ling et al. [20] developed a system which integrates an intru-
sion detection system at Tor exit routers to detect malicious Tor
traffic. They were able to monitor traffic and deploy the system in
a university. Results of their work showed that 10% of the traffic is
malicious, where the majority of it is P2P traffic and almost 9% is
malware traffic. They further improved their system in their suc-
ceeding work [21] where they proposed a way to block malicious
Tor traffic. They configured the intrusion detection system to send
alerts to a sentinel agent which will tear down the specific connec-
tion from the exit router. Results of their work showed that 8.99%
of the received alerts were malware-related.

There are studies which only focused on the malware-specific
detection such as worms [10, 12] and botnets [5, 15]. Al-Bataineh
andWhite [5] focused on detecting web-based data-stealing botnets.
They conducted an experiment using Naive Bayes, Multi-layer
Perception (MLP), and J48 1 classifiers where entropy and byte
frequency distribution from HTTP POST requests were used as
features. As J48 yielded the best results, it was fine-tuned where
results produced no false positives and minimum false negatives.

Other works focused on correlating malware families with their
usage of different protocols. Bekerman et al. [9] focused on features
from commonly-used application layer protocols (i.e. DNS, HTTP
and SSL) which yielded better performance over other intrusion
detection systems. Anderson et al. [6], on the other hand, corre-
lated the detection of malware family through its Transport Layer
Security (TLS) usage. They observed the differences on malware
families through ciphersuite selection, TLS client parameters, TLS
extensions, and many others. In this study, however, features from
TLS usage is not possible since Tor traffic implements TLS.

The closest work related to this study is from Jiménez and
Goseva-Popstojanova [18] where they used flows-based features
and system logs for malware detection. They used ML approaches
such as J48, Naive Bayes, PART, and Random Forest and evaluated
their tests using accuracy, precision, recall, 1-FPR, F-score, and
G-score. In this study, only flow-based features were considered
since it is not possible to monitor user’s computer state. A flow is a
series of packets with the same 5-tuple values (i.e., source IP, desti-
nation IP, source port, destination port, protocol). The relationship
between traffic classes and statistical properties like flow-based fea-
tures has been discussed in previous studies where the researchers
analyzed and constructed empirical models of connection charac-
teristics [24]. This study tests if these features are also effective in
classifying Tor malware traffic.

3 ONION ROUTING
Onion routing was first published in 1996. It was mainly designed
to provide anonymity to users. As a result of its use, eavesdropping
is avoided while traffic analysis within the network is impossible
to conduct. Onion routing establishes an anonymous connection
by creating a path through the network where each node can only
identify adjacent nodes along the path. Over time, the first gen-
eration onion routing was improved but was abandoned in 2002.
In 2004, Tor, a second generation onion router was introduced. It
improved and addressed some design and deployment issues of the
first generation onion routing design [3, 11].

1Java implementation of C4.5

Figure 1 shows a simple illustration of how a client connects to
the internet over the Tor network. For instance, if a user wants to
access a web service in the internet through the Tor network, a
local software in the client’s machine called an onion proxy (OP)
will establish a path between the client and the web service. The OP
will choose three random onion routers (ORs), respectively called
as entry, middle, and exit routers, which will constitute as a Tor
circuit. Traffic between the client and the web service is routed
through the created Tor circuit. Data from the client is bundled
with layers of encryption before it passes the Tor circuit. For every
OR the data passes, a layer of encryption is removed to determine
the next destination of the data. When the data reaches the exit
router, the last layer of encryption will be removed and will be
finally sent to the web service [3].

Several issues from the previous onion router design were ad-
dressed by the second generation onion router. One is the perfect
forward secrecy where ORs are prevented from recording the traf-
fic passing through them. This is done through the use of the TLS
connections with ephemeral keys for ORs to communicate with
each other. Tor also uses SOCKS proxy interface where they can
support more TCP-based applications. Tor also maintains directory
servers where trusted relay nodes and their state are listed and can
be publicly downloaded [11].

4 METHODOLOGY
4.1 Dataset Generation
The dataset consists of malware and non-malware Tor web traffic,
labelled as TorMal2019. To generate malware Tor web traffic, mal-
ware samples need to be executed over a controlled environment.
Recent samples (October 2017 to May 2019) of different malware
types such as trojans, worms, ransomware, and viruses were col-
lected from VirusTotal [1]. These samples were selected based on
their network communication capabilities whose information is
already provided by the VirusTotal website.

The non-malware traffic was captured by browsing HTTP and
HTTPS websites via web browsers Chrome and Mozilla. The mal-
ware traffic were captured from Dexter, Kazy, Locky, Parite, and
WannaCry malware families. Samples of each family were searched
in the VirusTotal database and used for the dataset. Each sample
collected was detected by at least 47 anti-virus software and identi-
fied under one of the mentioned malware families by at least one of
the anti-virus software. Table 1 shows the malware hash samples
collected to create TorMal2019.

The setup to generate the datasets was adopted from the work
of Lashkari et al. [19]. Two virtual machines (VMs) were set up as
the client workstation and gateway where Windows XP SP3 32-bit
and Whonix were used, respectively. VirtualBox 6.0.10 was used as
the hypervisor where it was installed on the host operating system
Ubuntu 18.04. Whonix is an open source operating system bundled
with two VMs: a workstation and a gateway which uses the Tor
network. Though it consists of a workstation and a gateway, only
the Whonix gateway was used for this study. A licensed Windows
XP VM, on the other hand, was configured to act as a workstation
instead of the Whonix workstation. This choice is because most
malware are written to attack Windows machines and not Linux-
based machines, such as that of the Whonix workstation [2, 22].

de Robles, Hermocilla, and Pabico Characterization and Classification of Malware Traffic over the Tor Network

Page 79



Figure 1: A simplified Tor architecture that anonymously connects the client to the internet.

Table 1: Malware hash samples used in TorMal2019.

Malware Hash (SHA256)

Dexter 49cd5c4a5b94db4243f67517d8e0eb3fef4e975cf055033eaac9a63e6b2739a9
Kazy 0a576137cef647a59cf341180a07807f50cc1781125b0c7b505067083777480a

1f8f8766e297716c61c4afa6508f0d214e4d2d72ee7752e3a9dc931737501a28
Locky 5b712f3ced695dd1510320494ecac67b277c0b386ee465303504c89431f87c78

5bf84469051c85bd684e03eb46f774cb1e913884c95acf7b210a8a4469da8d9f
Parite 4e37fa3eb78d435e8d2773a7e8f2a64b11e1f7a78e20085ac90d2ae1f3b3d9b2

5cf65eedc95b1da835f5ee03f42511b02c25d7f95f80524fe3d5c5f7685d3e58
WannaCry 4b6ae9f815889068f00c485cf3dd4588869cea36518d0ecf1af39bd146dfdc92

09a46b3e1be080745a6d8d88d6b5bd351b1c7586ae0dc94d0c238ee36421cafa

The Windows XP workstation was configured 2 to use an internal
virtual network interface that only connects to theWhonix gateway.
Its firewall service was disabled to allow malware to freely infect
the workstation and connect to the internet. Figure 2 illustrates how
the traffic passes from the workstation to the gateway. By default,
the Whonix gateway is configured to use two virtual network inter-
faces where one is connected to an internal network that connects
with the workstation and the other is connected through a bridged
interface to access the internet using the Tor network. The gateway
basically acts as the onion proxy for the client workstation that
routes traffic to a Tor relay. Figure 2 shows the system setup for
capturing Tor and non-Tor traffic.

Generating traffic for every malware sample was done separately
to easily label the data. Two types of traffic were collected: Tor and
non-Tor. For every malware and non-malware sample ran on the
workstation, two Wireshark or tcpdump instances were running
in the gateway, collecting the incoming (non-Tor) traffic from the
internal network and outgoing (Tor) traffic to the NAT network.
Each run lasted for five minutes. After every run, the workstation
is reset back to its initial state to ensure that the data collected
on the previous run does not provide residual and combinatorial
effects on the data on the next run. Resetting to the initial state was
done by saving the snapshot3 of the initially configured state of
the workstation which was used to restore the workstation when

2https://www.whonix.org/wiki/Other_Operating_Systems
3https://www.techrepublic.com/article/how-to-use-snapshots-in-virtualbox/

needed. The collection of data was replicated three times to ensure
statistical relevance and capture the variability brought about by
each specific run.

4.2 Malware and Non-malware Traffic
Classification

Figure 3 shows the layout of the experiment done to classify mal-
ware and non-malware traffic over the Tor network. From the Tor-
Mal2019 dataset, flows were generated to extract 76 flow-based
features. A flow timeout of 15 seconds was used in generating flows
from Tor traffic. To filter relevant features, the combination of CFS
Subset Evaluator and Greedy Stepwise were used for feature selec-
tion. These are already implemented in Weka. C4.5, KNN, Naive
Bayes, and Random Forest were built as classifiers. These classifiers
were also implemented in Weka where the default parameters set
in Weka were adopted for the experiment. Table 2 shows the list of
default parameters used. Precision, recall, false positive rate, and
false negative rate were the metrics used for the evaluation.

To evaluate what classifier is best for determining the metrics,
an analysis of variance (ANOV) was used as given by the statistical
model

Mi , j = ρi + µ j + ϵi , j , (1)

where Mi , j is the metric’s output of the jth classifier for the ith
replicate, ρi is the mean effect of the ith replicate, µ j is the mean
effect of the jth classifier, and ϵi , j is the error contributed by the

Computing Society of the Philippines, Inc. PCSC2020, March 2020, Baguio City, Philippines

Page 80



Figure 2: The setup for capturing Tor and non-Tor traffic of every traffic type and malware sample.

Figure 3: The experimental layout done on Tor malware and non-malware traffic classification.

Table 2: List of parameters with their description used for C4.5, KNN, Naive Bayes, and Random Forest classifiers.

Classifier Parameters Description
C4.5 C=0.25 Confidence threshold for pruning

M=2 Minimum number of instances per
KNN K=1 Number of nearest neighbors K

A=“EuclideanDistance” Nearest neighbour search algorithm
Naive Bayes None
Random Forest P=100 Size of each bag, as a percentage of the training set

size
I=100 Number of iterations
num-slots=1 Number of execution slots
K=0 Number of attributes to randomly investigate
M=1 Minimum number of instances per leaf
V=0.001 Minimum numeric class variance proportion of

train variance for split
S=1 Seed for random number generator

ith replicate and the jth classifier [17]. ANOV tests the following
null hypotheses:

(1) H ρ
0 : That the mean effects of replicates are the same at a

confidence level of α = 0.05:
i.e., ρ1 = ρ2 = · · · = ρ3; and

(2) H µ
0 : That the mean effects of classifiers are the same at α =

0.05:
i.e., µ1 = µ2 = · · · = µ4.

These means that the corresponding alternate hypotheses are:

(1) H ρ
1 : That at least one pair of replicates has different means

for all possible pairs of replicates at α = 0.05:
i.e., ∃ ρm , ρn, ∀m , n; and

(2) H µ
1 : That at least one pair of classifiers has different means

for all pairs of classifiers at α = 0.05:
i.e., ∃ µm , µn, ∀m , n.

The ANOV for each metric was summarized in a table similar to
Table 3. The F values were tested against α = 0.05. For each source
of variation, we accepted H0 and rejected the corresponding H1 if

de Robles, Hermocilla, and Pabico Characterization and Classification of Malware Traffic over the Tor Network

Page 81



the probability of F, denoted as P(F ), is found to be greater than α .
We rejected H0 and accepted the corresponding H1 if P(F ) ≤ α .

Table 3: A sample ANOV table for the metricM .

Sources of Variation DF Sum of Squares Mean Square F
ρ 2
µ 3
ϵ 6
Total 11

For any source of variation with an F statistic that is less than
α = 0.05, a mpairwise comparison of means using Duncan’s multi-
ple range test (DMRT) was employed to see which means provide
the significant variation [13]. Even though the standard pairwise
comparison of means for ANOV is Fisher’s Least Significant Differ-
ence (LSD) test [14, 25], DMRT was used because it is more strict
than LSD.

4.3 System Development
To automate the workflow, TracTor system was created by inte-
grating CICFlowMeter (2017) and Weka [16]. Figure 4 shows the
architecture of the system. There are twomain functions in TracTor:
feature extraction and traffic classification.

Feature extraction involves generating flows and extracting flow-
based features using CICFlowMeter. This is done by aggregating
packets with the same 5-tuple values and computing different prop-
erties from it. The flow timeout is done by dividing the flow into
15-second intervals. Flow labelling and flow merging were also de-
veloped as additional features of TracTor. Flows were automatically
labelled by obtaining the first substring of the filename containing
the Tor packets before the first dot (e.g., malware in the filename
malware.Dexter.pcap). For multiple files, TracTor still produces an
output file for every input, but will also merge the content of those
output files to a single attribute relation file format (arff) file. Traffic
classification involves the use of Weka API to integrate test options,
feature selection, and ML algorithms.

5 RESULTS AND DISCUSSION
5.1 TorMal2019
TorMal2019 generated a total of around 200MB of data for every
replicate. Figure 5 shows how Tor and non-Tor traffic were captured
on the gateway VM while a WannaCry malware sample was run-
ning in the workstation VM. TheWireshark instance on the left side
captured the traffic before encryption while the Wireshark instance
on the right side captured the same traffic but is now encrypted
through Tor. The series of packets from the Tor traffic shows that
the traffic captured was the communication between the gateway
VM (10.0.2.15) and a Tor entry node (173.249.8.113). Figure 6 shows
the state of the workstation VM as a WannaCry malware sample
infected it.

Table 4 shows the Tor malware and non-malware web traffic. The
variations in the number of flows for malware traffic per replicate
may be due to the unexpected behavior of malware sample for
every execution.

Table 4: The number of flows generated for three replicates
of TorMal2019.

Traffic Types Rep 1 Rep 2 Rep 3 Mean
Malware 164 189 211 188.000

Non-malware 41 39 40 40.000

5.2 Malware and Non-Malware Traffic
Classification

Table 5 shows the filtered features used for testing TorMal2019.
From 76 features, they were filtered to 8, 4, and 4 for each replicate,
respectively. Among those features, only 2 were common from the
three results.

Table 6 shows the precision, recall, false positive, and false neg-
ative values obtained from the experiment. Results show that all
classifiers obtained high precision and recall values of above 0.95.

Table 5: The list of features selected using CFS+Greedy algo-
rithm for each TorMal2019 replicate.

Rep 1 Rep 2 Rep 3
1 TotLen Fwd Pkts Fwd Pkt Len Max Fwd Pkt Len Max
2 Fwd Pkt Len Mean Fwd IAT Min Fwd IAT Min
3 Fwd Pkt Len Std Pkt Len Std Pkt Len Std
4 Flow IAT Max Fwd Act Data Pkts Fwd Act Data Pkts
5 Fwd IAT Min
6 Pkt Len Std
7 Down/Up Ratio
8 Subflow Fwd Byts

The results of ANOV to determine which classifier is best for
measuring precision, recall, false positive, and false negative values
are respectively shown in Tables 7 through 10.

For all ANOV tables (Tables 7 through 10), the F statistics for
µ (i.e., classifiers) for the respective metrics precision, recall, false
positive, and false negative were found to be not significant at α =
0.05. This means that we respectively accept each null hypotheses
for µ: The classifiers perform statistically the same compared to
each other in measuring the metrics. In Table 9, the F statistics for
replication ρ was found to be statistically significant at α = 0.05.
Here. we reject the null hypothesis and accept the alternate that
at least one pair of replicates are not statistically the same with
each other in measuring false positives. However, since we are
much more interested in false negatives (i.e., classifying malware as
non-malware) than false positives (i.e., classifying non-malware as
malware), we argue that the differences in replicates for measuring
false positives is not much of importance. In other words, it is quite
acceptable for us to “err on the side of caution.”

Figure 7 shows the computed mean µ and standard deviation σ
of false negatives. Results of C4.5, KNN, Naive Bayes, and Random
Forest have overlapped, e.g.,

[µ − σ , µ + σ ]C4.5 ∩ [µ − σ , µ + σ ]Naive Bayes , ∅,
where [µ − σ , µ + σ ]C4.5 is the inclusive range µ ± σ for C4.5 and
[µ − σ , µ + σ ]Naive Bayes for Naive Bayes. This may mean that all

Computing Society of the Philippines, Inc. PCSC2020, March 2020, Baguio City, Philippines

Page 82



Figure 4: The overview of TracTor consisting two main functions: feature extraction and traffic classification.

Figure 5: A screenshot of two Wireshark instances running to capture Tor (right side) and non-Tor (left side) traffic.

classifiers are statistically equivalent in minimizing malware types
being classified as non-malware. However, Random Forest obtained
the smallest spread of values from the replicates around the mean.
This observation was statistically verified from a pairwise compari-
son of means using DMRT at the same α = 0.05. This verification
is albeit redundant as the F statistics from Table 10 already shown
that the classifiers’ performances are not statistically different from
each other.

5.3 TracTor: A System to Automate the
Computational Workflow for Tor Traffic
Classification

TracTor was developed to automate the flow-based feature ex-
traction and traffic classification process. It can also be used for
other types of network traffic that utilizes flow-based features and
machine-learning algorithms. There are two main sections in Trac-
Tor: extract flows and classify traffic.

5.3.1 Extract Flows. Figure 8 shows a screenshot of the TracTor
extract flows section. This section takes a pcap file or directory
as input and produces an output in csv and arff file formats. The

de Robles, Hermocilla, and Pabico Characterization and Classification of Malware Traffic over the Tor Network

Page 83



Figure 6: A screenshot of a WannaCry malware sample infecting the workstation VM.

Table 6: Precision, recall, false positive, and false negative
results obtained from testing TorMal2019 replicates using
10-folds cross validation.

Classifier Precision Recall FP Rate FN Rate
Rep 1

C4.5 0.976 0.988 0.100 0.012
KNN 0.970 0.988 0.125 0.012
NB 0.982 0.976 0.075 0.024
RF 0.976 0.944 0.100 0.006

Rep 2
C4.5 0.935 0.995 0.333 0.005
KNN 0.964 0.979 0.179 0.021
NB 0.931 1.000 0.359 0
RF 0.959 0.995 0.205 0.005

Rep 3
C4.5 0.986 0.995 0.075 0.005
KNN 0.986 0.972 0.075 0.028
NB 0.986 0.986 0.075 0.014
RF 0.977 0.991 0.125 0.009

Table 7: ANOV table for determining the best classifier for
measuring precision.

Sources of DF Sum of Mean Square F
Variation Squares

ρ 2 0.00296 0.00147 10.49 ns

µ 3 0.00012 0.00004 0.28 ns

ϵ 6 0.00085
Total 11 0.00393

ns Not significant at α = 0.05.

pre-set list of dataset labels is an editable list of comma-separated
values used to filter valid labels in the filenames of the dataset.

Table 8: ANOV table for determining the best classifier for
measuring recall.

Sources of DF Sum of Mean Square F
Variation Squares

ρ 2 0.00077 0.00039 1.68 ns

µ 3 0.00062 0.00021 0.89 ns

ϵ 6 0.00138
Total 11 0.00277

ns Not significant at α = 0.05.

Table 9: ANOV table for determining the best classifier for
measuring false positive.

Sources of DF Sum of Mean Square F
Variation Squares

ρ 2 0.08221 0.04111 10.51 *
µ 3 0.00404 0.00135 0.34 ns

ϵ 6 0.02348
Total 11 0.10973

ns Not significant at α = 0.05.
* Significant at α = 0.05.

A text area for output is also included to show the details of the
feature extraction.

5.3.2 Classify Traffic. Figure 9 shows a screenshot of the Trac-
Tor classify traffic section. This section takes an arff file as input
and provides details of classification results as output. Users can
choose from the different test options provided. By default, 10-folds
stratified cross validation is performed for the Cross Validation
test option. Another option is the Test Data where TorMal2019 can
be used as training data or the user can provide a training data or
model. Once the training data is specified, TracTor performs feature
selection and automatically checks the filtered features in the fea-
tures list. Users can also choose which classifier to use on a certain

Computing Society of the Philippines, Inc. PCSC2020, March 2020, Baguio City, Philippines

Page 84



Table 10: ANOV table for determining the best classifier for
measuring false negative.

Sources of DF Sum of Mean Square F
Variation Squares

ρ 2 0.00010 0.00005 0.79 ns

µ 3 0.00036 0.00012 1.97 ns

ϵ 6 0.00036
Total 11 0.00082

ns Not significant at α = 0.05.

malware
0

1

2

3
·10−2

Fa
lse

N
eg
at
iv
e
Ra

te

C4.5
KNN

Naive Bayes
Random Forest

Figure 7: Mean and standard deviation error bar of malware
false negative rate computed from testing TorMal2019.

test, unless a user-supplied model is loaded. TracTor also has an
option to save a model that can be reused for testing. Classification
results provide computations of the following performance metrics:
Accuracy, kappa statistic, mean absolute error, root mean squared
error, relative absolute error, and root relative squared error. TP
rate, FP rate, precision, recall, f-measure, MCC, ROC Area, and PRC
Area were also computed for every traffic type.

6 CONCLUSION AND FUTUREWORK
Nowadays, internet anonymity is a growing need for users who
want to protect their identity and avoid network surveillance. Tor is
one of the most popular anonymity tool today where it implements
the concept of onion routing. Since anyone can use Tor, it can be
used for legitimate and illegitimate purposes. Unfortunately, Tor
has already been used for malicious purposes, one is hidingmalware
traffic.

This study presented how the TorMal2019 dataset was generated
to serve as input to the classification of malware and non-malware
traffic that passes through the Tor network. A system called TracTor
was also developed to automate the classification (using flow-based
features) workflow by integrating CICFlowMeter and Weka. Lastly,
through experimentation, results showed that all classifiers have the

same performance statistically. Even though Random Forest posted
with high precision and recall values with the lowest false negative
rate, it performed statistically the same as the others. Results also
proved that malware and non-malware traffic can be successfully
classified using only flow-based features.

For future work, additional features and other features selec-
tion algorithms can be implemented on TracTor. This can be done
to further minimize false negative rate of malware classification.
Moreover, TracTor can be extended to classify real-time Tor traffic
by utilizing its load and save model features.

ACKNOWLEDGMENTS
The authors would like to thank VirusTotal for providing the mal-
ware samples for this study.

The authors would also like to thank Prof. Jaime M. Samaniego,
Prof. Concepcion L. Khan, and the members of Systems Research
Group (SRG) of our institute for their valuable comments and help-
ful suggestions.

REFERENCES
[1] [n. d.]. VirusTotal. https://www.virustotal.com/gui/home/.
[2] 2012. Whonix. https://www.whonix.org/. Whonix 15 64-bit.
[3] 2015. Onion Routing. https://www.onion-router.net/.
[4] 2017. CICFlowMeter. http://www.netflowmeter.ca/netflowmeter.html. Canadian

Institute for Cybersecurity.
[5] Areej Al-Bataineh and Gregory White. 2012. Analysis and detection of malicious

data exfiltration in web traffic. In 2012 7th International Conference on Malicious
and Unwanted Software. IEEE, 26–31.

[6] Blake Anderson, Subharthi Paul, and David McGrew. 2018. Deciphering mal-
ware’s use of TLS (without decryption). Journal of Computer Virology and Hacking
Techniques 14, 3 (2018), 195–211.

[7] Avast Threat Intelligence Team. 2006. A deep and technical look
into the latest ransomware called Locky. https://blog.avast.com/
a-closer-look-at-the-locky-ransomware.

[8] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher
Kruegel. 2009. A View on Current Malware Behaviors. In 2nd USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET).

[9] Dmitri Bekerman, Bracha Shapira, Lior Rokach, and Ariel Bar. 2015. Unknown
malware detection using network traffic classification. In 2015 IEEE Conference
on Communications and Network Security (CNS). IEEE, 134–142.

[10] T Diibendorfer and Bernhard Plattner. 2005. Host behaviour based early detection
of worm outbreaks in internet backbones. In 14th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE’05).
IEEE, 166–171.

[11] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-
generation onion router. Technical Report. Naval Research Lab Washington DC.

[12] Falko Dressler, Wolfgang Jaegers, and Reinhard German. 2007. Flow-based
worm detection using correlated honeypot logs. In Communication in Distributed
Systems-15. ITG/GI Symposium. VDE, 1–6.

[13] David B. Duncan. 1955. Multiple range and multiple F tests. Biometrics 11, 1
(1955), 1–42.

[14] Ronald A. Fisher. 1935. The Design of Experiments. Oliver and Boyd, Edinburgh.
252 pages.

[15] Guofei Gu, Junjie Zhang, and Wenke Lee. 2008. BotSniffer: Detecting botnet
command and control channels in network traffic. (2008).

[16] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. 2009. The WEKA data mining software: An update. ACM
SIGKDD Explorations Newsletter 11, 1 (2009), 10–18.

[17] Chihiro Hirotsu. 2017. Advanced Analysis of Variance. John Wiley and Sons. 415
pages.

[18] Jarilyn M Hernández Jiménez and Katerina Goseva-Popstojanova. 2018. The
Effect on Network Flows-Based Features and Training Set Size on Malware
Detection. In 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA). IEEE, 1–9.

[19] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun,
and Ali A Ghorbani. 2017. Characterization of Tor Traffic using Time based
Features.. In 3rd International Conference on Information Systems Security and
Privacy (ICISSP). 253–262.

[20] Zhen Ling, Junzhou Luo, Kui Wu, Wei Yu, and Xinwen Fu. 2014. TorWard:
Discovery of malicious traffic over Tor. In IEEE INFOCOM 2014-IEEE Conference

de Robles, Hermocilla, and Pabico Characterization and Classification of Malware Traffic over the Tor Network

Page 85



Figure 8: A screenshot of TracTor used for extracting flow-based features.

Figure 9: A screenshot of TracTor used for classifying Tor traffic using the Random Forest classifier.

Computing Society of the Philippines, Inc. PCSC2020, March 2020, Baguio City, Philippines

Page 86



on Computer Communications. IEEE, 1402–1410.
[21] Zhen Ling, Junzhou Luo, Kui Wu, Wei Yu, and Xinwen Fu. 2015. Torward:

Discovery, blocking, and traceback of malicious traffic over tor. IEEE Transactions
on Information Forensics and Security 10, 12 (2015), 2515–2530.

[22] MalwareTech. 2017. Creating a Simple Free Malware Anal-
ysis Environment. https://www.malwaretech.com/2017/11/
creating-a-simple-free-malware-analysis-environment.html.

[23] T. T.T. Nguyen and G. Armitage. 2008. A Survey of Techniques for Internet Traffic
Classification Using Machine Learning. Commun. Surveys Tuts. 10, 4 (Oct. 2008),
56–76. https://doi.org/10.1109/SURV.2008.080406

[24] Vern Paxson. 1994. Empirically derived analytic models of wide-area TCP con-
nections. IEEE/ACM transactions on Networking 2, 4 (1994), 316–336.

[25] Sabra Sultana,MuhammadMutahir Iqbal, andMunir Akhtar. 2013. A visualization
of Fisher’s Least Significant Difference test. Pakistan Journal of Commerce and
Social Sciences 17, 1 (2013), 100–106.

de Robles, Hermocilla, and Pabico Characterization and Classification of Malware Traffic over the Tor Network

Page 87


