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ABSTRACT: Building extraction in remotely sensed imagery is an important problem that needs solving. It can be 

used to aid in urban planning, hazard assessments and disaster risk management among others. Light Detection and 

Ranging or LiDAR, is one of the most powerful remote sensing technologies nowadays. Many studies have used 

the fusion of LiDAR data and multispectral images in detecting buildings. This study seeks to maximize the power 

of LiDAR imagery to be able to classify buildings without the aid of multispectral imagery. This work follows the 

Object Based Image Analysis (OBIA) approach. Instead of the traditional pixel-based classification methods, pixels 

are segmented into logical groups called objects. From these objects, features for building extraction are calculated. 

These features are: the number of returns, difference of returns, and the mean and standard deviation of positive 

surface openness. These objects are then classified using different machine learning classifiers such as Support 

Vector Machines, K-Nearest Neighbors, Naïve Bayes Classifier, Decision Trees, and Random Forests. A 

comparative assessment was done on the performance of these different machine learning classifiers. The classifiers 

performed similarly with the Random Forest Classifier slightly outperforming the others.    

 

1. INTRODUCTION 
 

Building extraction in remotely sensed imagery is an important problem that needs solving. It can be used to aid in 

urban planning, hazard assessments and disaster risk management among others. The development of a building 

extraction method is one of the objectives of the UPLB Phil-LiDAR 1 project. 

 

Light Detection and Ranging (LiDAR) is one of the most powerful remote sensing technologies nowadays. The 

LiDAR is an instrument similar to radar, but it uses laser pulses instead of radio waves. (Campbell, 2011) 

Geospatial products, like Digital Elevation Models (DEMs), can be created using LiDAR instruments on aircraft 

(NOAA, 2015). 

 

Many recent studies have used LiDAR in conjunction with multispectral imagery. The different frequencies of the 

electromagnetic spectrum provide a lot of information helpful for building extraction and remote sensing in general. 

But high resolution multispectral imagery is not easily accessible.  In UPLB Phil-LiDAR 1’s case, orthophotos 

corresponding to LiDAR DEMs are available. These orthophotos have issues like misalignment with the LiDAR 

DEMs, areas with no coverage, inconsistency of colors due to changing atmospheric conditions, etc.      

 

Our study follows the Object Based Image Analysis (OBIA) approach. Instead of the traditional pixel-based 

classification methods, pixels are segmented into logical groups called objects. (Blaschke, 2010). From these 

objects, features for building extraction are calculated. Features are quantities that describe an object. (Kohavi, 

1998.) Machine learning classifiers, together with these features are used to classify objects.   

 

The general objective of this study is to evaluate different machine learning methods in building detection by object 

based image analysis using only LiDAR derivatives. The specific objectives are as follows: 

 

a. To identify features from LiDAR derivatives suitable for building extraction; 

b. To extract buildings using different machine learning classifiers; and 

c. To evaluate and compare the different machine learning classifiers   

  

2. REVIEW OF RELATED LITERATURE 

 

Through the years, airborne LiDAR technology has reached new heights of interest in remote sensing especially in 

applications such as building extraction. A number of techniques have been developed to correctly identify 

buildings, and these methods vary in performance and precision. 

 



One traditional approach in building extraction is pixel-based analysis, where images are classified per-pixel. Meng 

et al. (2009) developed a building detection method that first removes ground using a filtering algorithm, and then 

further removes remaining non-building pixels by using morphological operations on the elements’ size, shape, 

structure, height and height difference of its first and last returns. Their study, which only uses LiDAR data, yielded 

an overall accuracy of 95.46%. They added that fusing LiDAR data with other multi-spectral images may cause 

errors introduced by resolution differences, geo-referencing, time differences and high-rise building displacement 

problems. In 2006, Singh used a parameter called Openness in building extraction using LiDAR data of an urban 

area. It is a feature which expresses the degree of dominance or enclosure of a location on a surface (Yokoyama, 

Shirasawa, and Pike, 2002). His algorithm managed to remove most of non-ground, and non-building features from 

the data, and medium to large size buildings were successfully obtained in the result. 

 

With the technology advances in remote sensing, one problem rises regarding pixel-based methods applied to 

higher resolution imagery. These techniques often produces “salt and pepper” effect or noises that significantly 

affects the inaccuracy of the classifications (Campagnolo and Cerdeira, 2007; Gao and Mas, 2008). For this reason, 

OBIA were introduced and now widely used by researchers in spatial analysis. In 2014, Uzar developed an object 

oriented image analysis with a rule-based classification method for building extraction that incorporates both 

LiDAR data and ortho-images. The first step of his method is segmentation, which divides the image into logical 

regions or objects with common properties (Navulur, 2007). Finally, rules regarding shadow, nDSM, slopes and 

vegetation were defined to classify the building objects. His work reported results of completeness (81.71%) and 

correctness (87.64%). 

 

Other than rule-based classification, training and automatic classification of objects using machine learning 

classifiers were also widely used in OBIA. In 2014, Qian, along with other researchers, integrated both LiDAR data 

and high resolution images in classification to evaluate and compare the performances of four machine learning 

classifiers namely Support Vector Machine (SVM), Normal Bayes (NB), Classification and Regression Tree 

(CART) and K-Nearest Neighbour (KNN). He concluded that SVM and NB were superior to the other two 

classifiers as both achieved high classification accuracy (>90%). He also added that NB and KNN were more 

sensitive to the sample sizes.   

 

This study evaluated the effectiveness of using only LiDAR data in object based image analysis classification, 

whereas most techniques use multi-spectral imagery. The proposed methodology focused on separating buildings 

from non-building objects and different machine learning algorithms were tested.  

 

3. METHODOLOGY 

 

3.1 Study Area and Data 
 

The study area is located at the municipality of Pagsanjan, Laguna, Philippines in between longitudes 121.451° and 

121.461° and latitudes 14.268° and 14.277°. It encompasses the barangays Maulawin, Barangay I, Barangay II, and 

Pinagsanjan. The area has mixed land cover, with built-up, forested, and agricultural areas. Noticeably, it is 

trisected by the famous Pagsanjan River. (Figure 1) We used LiDAR data from DOST and UP Diliman’s Disaster 

Risk Exposure and Assessment for Mitigation (DREAM) Program’s Data Acquisition Component. The LiDAR 

Data was in .las format. (Figure 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Orthophoto of Study Site Figure 2. LiDAR Data of the Study Site 

visualized using LASView 



3.2 Software and Technologies Used 
 

ESRI’s ArcMap was used primarily to visualize the different data in an interoperable fashion. LiDAR derivatives 

were generated using the LAStools software package by rapidlasso (rapidlasso, 2015). Trimble’s eCognition was 

used for image segmentation. SAGA GIS, an open source GIS (SAGA Development Team, 2008), was used for 

some feature calculations. The main programming language used was Python, specifically Python version 2.7. For 

extending the power of Python in scientific applications, the SciPy stack was used (Jones, 2001). Scikit-image was 

the library used for digital image processing (van der Walt, 2014). All of the machine learning classifiers were 

implemented using the scikit-learn library (Pedregosa, 2011).  

 

3.3 Preparation of Inputs 
 

3.3.1 LAStools-Generated LiDAR Derivatives 
 

The LAStools software package, specifically lasground, lasgrid, and blast2dem was used to generate the needed 

Digital Elevation Models. Lasground was used on the unclassified .las file to identify the ground points. Blast2dem 

was run using different parameters to generate the Digital Surface Model (DSM), Digital Terrain Model (DTM), 

and Only Last Returns (OLR) raster. Lasgrid was used to create the Number of Returns (NOR) raster. These 

derivatives were generated as Tagged Image Files (TIFF) with a cell size of 0.5m and UTM projection 51N. (Figure 

3a-d) There were some problematic areas in the river area of the DEMs. (Figure 4)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Normalized Digital Surface Model (nDSM) 
 

The Normalized Digital Surface Model or nDSM is a DSM that doesn’t have the effect of terrain, as if the surface 

features were lain on a flat plane. The DSM and DTM were subtracted to create an initial nDSM. The initial nDSM 

was then thresholded with a value of 3 meters (we assumed that buildings are at least 3m high) and was cleaned 

using area thresholding.  (Figure 5)  

 

3.3 Image Segmentation 
 

Multi-resolution segmentation is a powerful region based segmentation algorithm proposed by Baatz and Schäpe in 

2000 and has also been commercially available through Trimble eCognition. It is a bottom-up region merging 

technique that group areas of neighboring pixels into meaningful segments or objects based on the homogeneity 

criteria. This will result to homogeneous areas having larger objects than heterogeneous areas. It uses three 

parameters in segmentation namely scale, shape, and compactness. 

 

Multiresolution segmentation with shape of 0.5 and compactness of 0.1 was used on the nDSM. The nDSM was 

segmented into 10813 objects. The figure below shows the results of segmentation. (Figure 6) After removing 

Figure 3. LASTools Generated DEM (zoomed in) 

(a) DSM (b) OLR (c) DTM (d) NOR 
Figure 4. Problematic area in the 

river 

(a) (b) 

(c) (d) 



objects that are mostly ground pixels (mean value < 3m), the number of objects to be considered for classification 

goes down to 9558. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Feature Extraction 
 

Features were calculated on every image object generated by segmentation. These features are: Mean Difference of 

First and Last Returns, Mean Number of Returns, Mean and Standard Deviation of Positive Surface Openness.  

 

3.4.1 Mean Difference of First and Last Returns 
 

As mentioned earlier, the laser pulses of the LiDAR instrument can have multiple returns depending on what the 

pulses hit. Multiple returns can be caused by power lines, canopies, branches, some form of obstructions, etc. 

Building roof points usually have little difference between the first and last returns. A lower value for this feature 

could indicate that the object is of class building. To calculate this feature, the OLR must be first subtracted from 

the DSM. Then, calculate the mean of the difference for every object.  

 

3.4.2 Mean Number of Returns 
 

If a surface has more than one return, it is highly likely that the point in the surface is not part of a building. A 

lower value for this feature could indicate that the object is of class building. To calculate for this feature, calculate 

the mean of the NOR for every object.  

 

3.4.3 Mean and Standard Deviation of Positive Surface Openness 
 

Openness, a parameter which was developed by Yokoyama, Shirasawa, and Pike in 2002, is essentially an angular 

measure of the relation between surface reliefs and horizontal distances. This measure can be expressed in two 

perspectives - positive and negative openness – as shown in Figure 7. Positive values expresses the convex features 

of the topography or simply the openness above the surface while negative values describes the concave features or 

the openness below the surface. 

 

 

 

 

 

 

 

 

 

Figure 5. Normalized Digital Surface Model (nDSM) Figure 6. Result of Multiresolution Segmentation 

Figure 7. Positive and Negative Openness (from Yokoyama, 2002) 



In this study, mean and standard deviation of positive openness in objects were used as features. Given that 

buildings tend to be more homogeneous than trees and vegetation, building objects usually have higher mean of 

positive openness and lower values of standard deviation. These features were computed using SAGA GIS.  

 

3.5 Object Classification Using Machine Learning 
 

The remaining step in OBIA is to classify the objects into different classes. For this study, two classes were 

specified: Building and Non-building.  

 

The machine learning classifiers used in this study fall under the category of supervised learning methods. 

Supervised learning tries to learn a mapping between input and output variables. This mapping is then applied to 

previously unseen data to predict outputs. (Cord, 2008) Supervised learning uses labeled training data as input to 

create models for predicting outputs.  

 

3.5.1 Machine Learning Classifiers 
 

K-Nearest Neighbors (KNN) is one of the simplest machine learning classifiers. Examples are classified based on 

the class of the nearest neighbor on the feature space. Usually, more than one neighbor is taken into account to 

improve results, hence, K-Nearest Neighbors. (Cord, 2008) 

 

Support Vector Machines (SVM) is a very popular machine learning technique in Object Based Image Analysis. It 

seeks out the optimal hyperplane that effectively separates the classes (Figure 7). Kernel functions are used to map 

non-linear decision boundaries to higher dimensions where they are linear. This study used the popular radial basis 

function (RBF) kernel. (Tzotsos, 2008) The parameter C is for adjusting the tradeoff between large margins and 

few classification errors. (Cord, 2008) 

 

The Naïve Bayes (NB) Classifier is based on Bayesian statistics. It evaluates classifications using probability 

distributions (Cord, 2008). This study assumes that the distribution of the different features is Gaussian. 

 

Decision Trees (DT) create models for classification by using a series of decision rules. These decision rules branch 

out forming trees of different depths, where deeper trees can make fitter models (“1.10. Decision Trees”, n.d.). 

Scikit-learn’s implementation uses the Classification and Regression Trees (CART) algorithm that constructs 

binary trees by using ideal features and thresholds to create better trees.  

 

Random Forests (RF) is an ensemble learning method that uses a group of decision trees. Results of random forests 

are usually better models due to its randomness (“1.11. Ensemble methods”, n.d.).  

 

The scikit-learn implementations of the classifiers were used in this study.  

 

3.5.2 Preparation of Training Data 
 

In this study, different sizes of training data were used to see the effect of increasing training data size.  Out of the 

9558 objects for classification, 50,100, and 150 samples were randomly selected for both classes. The method of 

sampling used was stratified random sampling. We pre-classified the samples by visual inspection with the aid of 

the orthophoto.   

 

3.5.3 Training, Classification, and Parameter Tuning 
 

We used the following scikit-learn classes in this study: KNeighborsClassifier for K-Nearest Neighbors, SVC for 

Support Vector Machines, GaussianNB for Naïve Bayes, DecisionTreeClassifier for Decision Trees, and 

RandomForestClassifier for Random Forests.  

 

We explored the different parameters for instantiating the classifiers. We tried different values for the number of 

neighbors in KNN, C in SVM, the maximum depth in DT, and the number of estimators in RF. We also trained 

these classifiers with different training data sizes to see the effect of differing sample sizes. 

 

3.5 Accuracy Assessment 
 

Ground truth samples were selected by stratified random sampling with 200 non-building objects and 100 building 

objects. Since the samples are scattered all throughout the dataset, they were not shown in this paper due to paper 

length constraints. The problematic areas of the nDSM were not considered for ground truth selection.  



 

The performance of the classifiers was measured using the metrics Overall Accuracy and Cohen’s Kappa. These 

metrics are derived from error matrices. A value of 0.81-0.99 is generally considered “almost perfect agreement.” 

(Viera, 2005)    

 

4. RESULTS AND DISCUSSION 

 

The graphs below show the performance of the classifiers on different sizes of training data and values of 

parameters. KNN worked well with 50 training samples. Increasing sample size needs higher values for K-

Neighbors. For this study’s case, a value of 10 was found as the ideal value for C in SVM. Increasing C values led 

to worse performance. Increased sample size led to better performance for the case of NB. For DT, too many 

samples led to overfitting, thus reducing performance. It’s difficult to look for a trend in RF’s results due to its 

randomness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Performance of KNN configurations 

Figure 9. Performance of SVM configurations 

Figure 10. Performance of NB configurations 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be noted that the overall accuracy and kappa of the classifiers are very close to each other, with almost 

insignificant differences. For this study’s case, increasing the size of training data did not improve classification 

accuracy significantly. Also, tuning the different parameters did not change the performance significantly.       

 

Table 1. Best performing configurations of the classifiers 

Classifier 
Training 

Data Size 
Parameter Value 

Overall 

Accuracy 

Cohen’s 

Kappa 

K-Nearest Neighbors 50 K-Neighbors 5 0.946666667 0.881773399 

Support Vector 

Machines 
50 C 10 0.946666667 0.881773399 

Naïve Bayes 150 N/A N/A 0.933333333 0.848101266 

Decision Trees 100 Maximum Depth 4 0.94 0.865336658 

Random Forest 100 Number of  Estimators 8 0.95 0.886649874 

 

The table above shows the best performing of all the configurations tried for every classifier and the output of these 

classifiers zoomed in on a certain area.  RF with 8 estimators and 100 samples per class was the best performing 

classifier with an overall accuracy of 95% with a kappa value of 0.8866. The images below show the outputs of 

these best performing classifiers. It can be seen that the results are very similar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Performance of RF configurations 

Figure 10. Performance of DT configurations 

Figure 12. Result of best performing KNN 

configuration 
Figure 13. Result of best performing SVM 

configuration 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was shown earlier that there were problematic areas in the nDSM. These areas were misclassified (Figure 17) by 

the classifiers since they exhibit features similar to buildings. These misclassifications were ignored in this study 

since it was a problem with the data and outside the scope of this study.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Result of best performing NB configuration Figure 15. Result of best performing DT configuration 

 

Figure 16. Result of best performing RF configuration 

Figure 17. Misclassification of problematic river area 



 

5. CONCLUSION AND FUTURE WORK 

 

In this study, we sought to maximize the power of LiDAR information by deriving features like the mean difference 

of first returns, mean number of returns, and the mean/standard deviation of positive surface openness. We 

evaluated and compared five different machine learning methods for building extraction, namely K-Nearest 

Neighbors, Support Vector Machines, Naïve Bayes, Decision Trees, and Random Forests. We trained these 

classifiers with varying training data size. We tested different parameter values for the classifiers; we tried different 

values for the number of neighbors in KNN, the regularization parameter C in SVM, the maximum depth in DT, 

and the number of estimators in RF.  

 

The Random Forest classifier with 8 estimators and 100 samples per class was found to be the best performing 

classifier. The results are very similar with each other. We found out that the overall accuracy and kappa of all the 

classifiers are very close to each other, with almost insignificant differences. We found that for our case, increasing 

the size of training data and tuning the parameters for the classifiers did not improve classification accuracy that 

much. These probably are indicators of the effectiveness of the selected features in classifying buildings. 

 

The classifiers in this study were only tried for one dataset, this study could be extended to handle all datasets. 

Further research can be done on deriving more features from LiDAR data. Better features will result to even better 

classifications. With more features, studies can be done on classification of more specific classes like farm areas, 

forest types, building types, etc.     
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