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ABSTRACT: Spectral indices are formulas that integrate different wavelengths, or bands, of the electromagnetic 

spectrum to accentuate the abundance of various features of interest such as vegetation, burned areas, man-made, 

water, and geological features. Given its numerous applications, research on the development of spectral indices is a 

worthwhile undertaking. New spectral indices could be created as improvements over existing ones in aspects such as 

separability and sensitivity. New spectral indices can be developed for other features not yet covered by any spectral 

index. 

 

The problem of developing spectral indices was posed as a search problem. The search space consists of all possible 

spectral indices. A spectral index was viewed as a combination of various spectral bands, mathematical operators, and 

numerical coefficients. Therefore, search algorithms could be used to generate spectral indices.  

 

For this study, the memetic algorithm was utilized. Specifically, a memetic variant of genetic programming was 

developed. This was achieved by augmenting the genetic programming algorithm with the simulated annealing 

algorithm.     

 

The developed algorithm was used to generate spectral indices for vegetation and built-up areas. Training points 

derived from Landsat 8 imagery was used as the input. The quality of the generated spectral indices was measured 

using two metrics: Silhouette Score and the Jeffries-Matusita distance. Indices for vegetation and built-up areas were 

developed: namely Memetic Genetic Programming Vegetation Index (MGPVI) and Memetic Genetic Programming 

Built-up Index (MGPBI). MGPVI was compared with other vegetation indices and MGPBI was compared with other 

built-up indices. Both generated indices outperformed their competing indices in terms of the earlier mentioned 

metrics. 

 

1. INTRODUCTION 

 

An index is a metric that describes complex phenomena using a limited number of parameters. (Bouzekri et al., 2015) 

In remote sensing, a spectral index is a formula that integrates different wavelengths, or bands, of the electromagnetic 

spectrum to accentuate the abundance of various features of interest such as vegetation, burned areas, man-made, 

water, and geological features. (Harris Geospatial Solutions, 2018) Spectral indices were also used by researchers as 

tools in aiding land cover classification in remotely sensed imagery. (Jabloun et al., 2009; Bhatt et al., 2018) 

 

One of the most popular spectral indices is the vegetation index Normalized Difference Vegetation Index (NDVI) 

which was developed by Rouse. (Rouse et al., 1974). This index highlights areas of healthy, green vegetation. NDVI 

utilizes the near-infrared band (0.6 µm) and the visible red band (0.9 µm) and is given by the formula:  

 

NDVI =  
NIR - RED

NIR +  RED
 

(1) 

 

where NIR represents the Near-Infrared band, and RED represents the red band. The RED band is used since healthy 

vegetation absorbs waves of this frequency well. On the other hand, the NIR band is used since healthy vegetation 

reflects this frequency well. (Perez and Comiso, 2015) 

 

Given the numerous applications of spectral indices, research on this area is a worthwhile undertaking. New spectral 

indices could be created as improvements over existing ones in aspects such as separability and sensitivity. Spectral 

indices can be developed for other features not yet covered by any spectral index. Also, spectral indices could also 

be devised as feature extraction tools to improve the results of land cover classification 
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The problem of finding spectral indices can be posed as a search problem. The search space consists of all possible 

spectral indices. A spectral index can be viewed as a combination of various spectral bands, mathematical operators, 

and numerical coefficients. There could be better spectral indices waiting to be uncovered in the depths and breadths 

of the search space; convoluted formulas and unexpected combinations could be found. Thus, search algorithms and 

heuristics could be utilized to generate spectral indices. 

 

Evolutionary Algorithms are search and optimization methods that were inspired by Darwinian Evolution. In EAs, 

the essence of natural selection is imitated. Solutions are represented as chromosomes, and these chromosomes are 

made to evolve by operations such as selection, crossover, and mutation. It has been established that pure 

evolutionary algorithms are not effective in complex combinatorial spaces, and hybridization with other approaches 

can highly improve the efficiency of search. The combination of EAs with local search operators was dubbed as 

Memetic Algorithms. These methods were based on adaptation models in natural systems that fuse the evolutionary 

adaptation of a population with the individual learnings of its members. The etymology of the name Memetic 

Algorithm was Richard Dawkins’ concept of a meme, which represents "a unit of cultural evolution that can exhibit 

local refinement." The memetic model captures the plasticity of individuals that EAs cannot. (Krasnogor and Smith, 

2005) 

 

The main contribution of this study is to design, implement, and evaluate the utilization of memetic algorithms in 

generating spectral indices for remotely sensed imagery. The specific contributions of this study are as follows: 

 

1. To identify various metrics to evaluate the quality of a spectral index 

2. To utilize the developed algorithm for crafting spectral indices for various applications such as vegetation 

and urban sprawl monitoring; and 

3. To compare the generated spectral indices with existing ones 

 

2.  REVIEW OF RELATED LITERATURE 

 

Several literatures have reported on the use of Genetic Programming in the derivation of spectral indices. Chion, et 

al. authored A Genetic-Programming-Based Method for Hyperspectral Data Information Extraction: Agricultural 

Applications.  (Chion, et al., 2008) In this study, the researchers introduced a method called genetic programming-

spectral vegetation index or GP-SVI. Using Genetic Programming, a descriptive regression model is evolved, 

wherein ground truth observations of nitrogen content were correlated into a vegetation index. The fitness function 

for the algorithm consists of correlation strength with the ground truth data and length was penalized, meaning shorter 

indices were rewarded and longer indices were penalized. Two spectral indices for estimating nitrogen content were 

developed. 

 

In a work by Puente, et al., the researchers created vegetation indices using Genetic Programming to automatically 

detect the sum of healthy, dry, and dead vegetation in the context of soil erosion assessment. The Revised Universal 

Soil Loss Equation or RUSLE is an erosion model defined by the equation A = R*K*L*S*C*P where R is the 

rainfall-runoff factor, K represents the influence of soil properties on soil loss during storm events, L represents the 

slope length factor, S is the slope steepness factor, C provides the ground cover factor, and P describes the 

conservation support practice factor. The C factor is one of the most vital factors and it can be derived using 

vegetation indices.  However, the results tend to be incomplete since most vegetation indices are only sensitive to 

healthy vegetation, whilst senescent vegetation also helps in reducing erosion.   The authors devised a novel approach 

where GP was used to calculate the C factor by creating spectral indices correlated with field and satellite 

information. (Puente, et al., 2011) 

 

In 2017, Albarracin authored his Master’s Thesis entitled “Genetic-Programming-Based Spectral Indices for Remote 

Sensing Image Classification.” (Albarracin, 2017) In the study, the author developed an image classification 

algorithm based on spectral indices derived using Genetic Programming. The derivation of spectral indices was 

similar to the previous papers in this section; but instead of using correlation with ground measurements as the fitness 

function, a metric called the Silhouette Score was used. The spectral indices were used as a means of feature 

extraction and dimensionality reduction.  

 

3.  MATERIALS AND METHODS 

 

3.1 Workflow for Generating Spectral Indices 

 

Figure 1 illustrates the workflow which begins with a multiband remotely-sensed image. From the image, training 

points will be extracted. The training points will be the input to the memetic genetic programming algorithm. The 

algorithm will then output a spectral index which would be subjected into performance evaluation using various 
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metrics described in the succeeding sections. 

 

 
Figure 1. Workflow for Generating Spectral Indices 

 

3.2 Metrics for the Comparison of Spectral Indices 

 

3.2.1 Silhouette Score 

 

The problem of creating spectral indices could be linked to clustering. Given a multiband image with n bands, 

calculating a spectral index merges the n-dimensional data into one dimension.  In the multiband image, given a 

distribution of points of different cover classes, each class could be interpreted as a cluster. Points of the same class 

should have similar calculated spectral index values and could be grouped into a cluster. Therefore, in the design of 

a spectral index, index values of the same class should be as similar as possible, and index values of different classes 

must be as different as possible. 

 

In the seminal paper by Rousseeuw, he introduced a metric called the Silhouette Score (SS). (Rousseeuw, 1987) The 

silhouette is based on the comparison of every cluster’s tightness and separation.   It quantifies how well an object is 

assigned to its cluster, and with respect to other clusters. The average dissimilarity of an object x to a cluster Ci is 

the mean of the distances of x to all objects that   belong to Ci.  Let a(x) be the average dissimilarity of x to its own 

cluster.  b(x), on the other hand is the smallest average dissimilarity of x to the other clusters.  b(x) shows the 

dissimilarity of x with another cluster that it is most similar to. The silhouette of an object x is given by: 

 
 

s(𝑥) =
𝑏(𝑥) − 𝑎(𝑥)

𝑚𝑎𝑥(𝑎(𝑥), 𝑏(𝑥))
 

(2) 

3.2.2 Jeffries-Matusita Distance 

 

Another metric that can be used to quantify the quality of a spectral index is the Jeffries-Matusita distance (JMD). It 

is commonly used to measure the separability of land cover classes. JM distance is calculated as: 

 

 JM  =  2(1  −  𝑒−𝐵)  
(3) 

where B is the Bhattacharyya distance which is given by: 

 

B  =  
1

8
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1
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(4) 

where, 𝐷𝑝𝑜𝑜𝑙
2  is the pooled Mahalanobis distance which is given by: 

 

𝐷𝑝𝑜𝑜𝑙
2  =  (𝜇𝑖  − 𝜇𝑗)′ (

𝛴𝑖  + 𝛴𝑗

2
)

−1

(𝜇𝑖  −  𝜇𝑗) 

(5) 

 

 

where, i and j are classes, μ is the mean vector of index values, and Σ is the variance-covariance matrix. (Van Niel 

et al., 2005) The values of the JM distance range from 0 (indicates a low separability between classes) to 2 (indicates 

high separability). (Qiu et al., 2014) 
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3.3 Training Data 

 

The workflow for generating spectral indices need points as training data. Given a remotely sensed image as a 

basemap, points were digitized in the ESRI shapefile format. Each point has a class label and the band reflectance 

values. In digitizing points, each class must be properly represented by a variety of examples for different instances 

of the class.  

 

3.4 Memetic Genetic Programming Algorithm 

 

3.4.1 Flow of the Algorithm 

 

The memetic genetic programming algorithm that was implemented was based on the template of a memetic 

algorithm described in Cotta, et al. (Cotta, et al., 2016) An initial randomized population of spectral indices will be 

generated, and these spectral indices have an associated fitness value computed using a fitness function. The higher 

the fitness, the better the spectral index. The initial randomized population will then be improved using a local search 

operator. For a certain number of generations, the population will be evolved using the selection, crossover, mutation, 

and local search operations. The best spectral index, meaning the index with the highest fitness value, for all 

generations will be the output of the algorithm. 

 

The following describes what happens in every generation. Using the selection operation, spectral indices will be 

chosen as parents based on their fitness values. The selected parents are recombined using the crossover operation 

and will result to two new “offspring” spectral indices. These offspring are improved using the local search operator. 

After improvement, the improved offspring will be further evolved using the mutation operation. After the mutation, 

the mutated offspring will be improved again using the local search operator. These improved offspring will now 

replace the current population. The population is considered stagnant if the best spectral index does not change after 

a certain number of generations. If the population is stagnant, the restart operation commences where the worse half 

of the population is replaced with a new set of spectral indices improved using the local search operator.       

 

3.4.2 Genetic Representation 

 

Spectral indices were represented as syntax trees. The root and internal nodes represent mathematical operations, 

specifically addition (+), subtraction (-) multiplication (*), and protected division (/). Instead of a regular division 

operation, a safe division operation was implemented to handle complications that could be brought up by dividing 

by zero, which is undefined. When the divisor is zero, the quotient will be set to one. On the other hand, the leaf 

nodes contain the composition of a selected band, a coefficient between zero and one, and a unary operator. The 

unary operators in the leaf node comprise of a negation operation (-), protected square root (sqrt), and protected base-

10 logarithm (log). The selected band should be a valid band from the type of spectral image used. A safe square 

root operation was implemented to handle complications that could be caused by negative operands. This is done by 

always applying the absolute value operation on the operand. Also, a safe base-10 logarithm was implemented to 

handle zero and negative values by returning zero if the input is zero and getting the base-10 logarithm of the absolute 

value of the operand when the values are negative.   The safe operators discussed were recommendations from a 

study by Koza. (Koza, 1994).  Figure 2 shows the syntax tree representation of an index log10B1 * sqrt(B7) and the 

Normalized Difference Vegetation Index. 

 

 
Figure 2. Syntax tree representation of an index log10B1 * sqrt(B7) and the Normalized Difference Vegetation Index 

 

3.4.3 Fitness Function 

 

The fitness function for the candidate spectral indices of the algorithm is given below: 
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𝐹  =  𝑎  ⋅ 𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑆𝑐𝑜𝑟𝑒  +  𝑏  ⋅ 𝐽𝑀𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒/2  +  𝑐  ⋅ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑙𝑎𝑠𝑠  +  𝑑  ⋅ 𝑜𝑡ℎ𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑒𝑠  +  𝑒  ⋅ 𝑖𝑛𝑅𝑎𝑛𝑔𝑒 +  𝑓 ⋅ 𝑖𝑠𝐶𝑙𝑎𝑠𝑠𝑀𝑎𝑥  

                 where a + b + c + d + e + f = 1.0 

(6) 

F is a weighted function of two factors: quality and form. The quality factor measures the quality of the spectral 

index.  For the quality factor, the silhouette score (silhouetteScore) and the Jeffries-Matusita Distance (JMDistance) 

of the spectral index were calculated using the training points. The form factors are boolean values that indicate some 

trait in the calculated values of the spectral index. It includes traits such as: the mean value  of the calculated index 

values for the selected class must be greater than a value w (selectedClass), the mean value of the calculated index 

values for the other classes must be less than a value  x (otherClasses),  and both mean values  must be within values 

y  and z  (inRange), and if the largest calculated index value belongs to the selected class (isClassMax). 

 

The form factors, on the other hand, ensure that the index adheres to some value constraints.  The form factors will 

help standardize the calculated values of the spectral index to make it easily interpretable 

 

3.4.4 Selection 

 

For the selection operation, roulette wheel selection was used. In roulette wheel selection, the probability of an 

individual to be selected is proportional to its fitness. In this method, the population is sorted based on their fitness 

(F) in descending order. The fitness values are then normalized in a range from 0 to 1. A random number between 0 

and 1 is generated. The sorted list of individuals is traversed, accumulating the normalized fitness scores. When the 

accumulated value exceeds the randomized number, the individual is selected. 

 

3.4.5 Crossover 

 

The crossover operation involves the exchange of subtrees between two syntax trees.  For the simplicity of the 

implementation, the crossover point is at the root node. Figure 3 shows an example of a crossover between two 

spectral indices.  

 
Figure 3. Sample crossover between two spectral indices 

 

3.4.6 Mutation 

 

Two cases of mutation were implemented:  basic and expansion.  The basic case includes traversing the syntax tree, 

and according to the mutation rate, change the content of a node.  Expansion involves randomly generating a spectral 

index with a height of two and replacing a leaf node of the original syntax tree with the randomly generated one. 

Figure 4 shows examples of a mutation operation. 

 

3.4.7 Local Search Operator: Simulated Annealing 

 

Tampering metal, glass, or crystal by heating above its melting point, maintaining its temperature, and cooling it 

very slowly until it solidifies into a perfect structure is referred to as annealing. Emulating this process as a search 

heuristic is called simulated annealing. In the computer science analogy, the perfect crystalline structure represents 

the best solution, the physical material represents problem solutions, the energy of the state represents the fitness of 

a solution, and the temperature represents a control parameter. (Yang, 2010) Simulated Annealing is performed on 

a spectral index to improve it. 
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Figure 4. Sample mutation operation 

 

The following briefly describes the algorithm. The current temperature is represented by T and is usually initialized 

with a high value. Given a certain number of iterations, the spectral index is attempted to be improved by performing 

modifications on the index. If the fitness improved, it replaces the current index. Else, the index is replaced with a 

probability of e(Δfitness/T), where Δfitness is the difference of the fitness values before and after the attempted 

improvement, and T is the current temperature. After the series of attempted improvements, T is decreased by 

multiplying it with the factor (1 - cooling), where cooling is the cooling schedule typically a value under 1.0. The 

process stops until Tmin or the minimum set temperature is reached. The best index during the entire process is the 

output of the algorithm.  

 

 

3.5 Input Data 

 

For the input multiband image, a Landsat 8 scene (Path 116, Row 51) taken August 1, 2016 was used. The image 

was pre-processed using ENVI software’s radiometric calibration tool to convert the raw digital numbers to actual 

reflectance values. 

 

Five classes were defined: (1) Vegetation, (2) Built-up, (3) Open/Bare Areas, (4) Sediment/Sand, and (5) Water. 

Five-hundred training points were collected from the imagery with 100 points per class. Figure 5 shows the input 

Landsat 8 scene with the training points overlain. 

 

3.6 Validation Data 

 

A new validation point dataset was created to remove the bias for the calculation of the index’s silhouette score. The 

validation set consists of 500 points with 100 points per class, similar to the training data. The validation dataset was 

collected only from a subregion of the image. This was due to computational constraints of calculating the spectral 

index images. Figure 12 shows the subregion of the Landsat Image and the collected validation points. 

 

3.7 Hyperparameters of the Algorithm 

 

The Memetic Genetic Programming Algorithm was ran with the following hyperparameters: Number of Generations 

= 200, Population Size = 20, Crossover Rate = 0.90, Mutation Rate = 0.90, Stagnant If = 20 generations, a = 0.30, 

b= 0.30, c = 0.1000, d = 0.10, e = 0.10, f= 0.1, w = 0.50, x = 0.50, y = -1, and z = 1. The Simulated Annealing 

Algorithm was ran with Initial Temperature = 5000, Tmin = 1, Cooling = 0.3, and Number of Iterations = 10. These 

hyperparameters were both used in generating both MGPVI and MGPBI.  

 

 

4. RESULTS AND DISCUSSION 

 

Using the developed Memetic Genetic Programming Algorithm for generating spectral indices, two prototype 

spectral indices have been generated using Landsat Imagery. These indices are the Memetic Genetic Programming 

Vegetation Index (MGPVI), and Memetic Genetic Programming Built-up Index (MGPBI). Sample images for these 

indices are shown in Figure 7. 
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Figure 5. Input Landsat 8 Scene and Training Points 

 

 
Figure 6. Landsat 8 Scene Subregion and Validation Points 

 

 
 

Figure 7. Sample outputs for MGPVI (Left) and MGPBI (Right) 
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4.1 Memetic Genetic Programming Vegetation Index 

 

MGPVI was defined as: 

 

𝑀𝐺𝑃𝑉𝐼 =  
0.35𝐵5 ∙ log10 0.83𝐵3 ∙  √0.75𝐵2 

0.88𝐵1 ∙  (√0.7𝐵6 −  √𝐵5)
 

(7) 

 

MGPVI was compared to other vegetation indices: Simple Ratio (SR) (Birth and McVey, 1968), Normalized 

Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) (Huete, et al., 1980), and Global 

Environment Monitoring Index (GEMI) (Pinty and Verstraete, 1992). These indices are given by the following 

equations: 

 

SR =
NIR

𝑅
 

(8) 

SAVI =
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
(1 + 𝐿) 

(9) 

GEMI = η(1 − 0.25η) − (𝑅 − 0.125)/(1 − 𝑅) 

η =
2(𝑁𝐼𝑅2 − 𝑅2) + 1.5𝑁𝐼𝑅 + 0.5𝑅

𝑁𝐼𝑅 + 𝑅 + 0.5
 

(10) 

Using the validation data, the metrics of the vegetation indices were calculated and given by the table below: 

Table 1. Calculated Metrics for Vegetation Indices 

Vegetation Index Silhouette Score Jeffries-Matusita Distance 

MGPVI 0.70 2.00 

SR 0.58 1.81 

NDVI 0.64 2.00 

SAVI 0.54 2.00 

GEMI 0.61 2.00 

It can be observed from Table 1 that MGPVI garnered the highest score from all the indices. 

4.2 Memetic Genetic Programming Built-up Index 

 

MGPBI was defined as: 

 

𝑀𝐺𝑃𝐵𝐼 = √0.39𝐵7 + √0.94𝐵2 −  
−0.94𝐵5

log10 0.57𝐵6 +  log10 0.44𝐵5
 

 

 

MGPBI was compared to other built-up indices: Normalized Difference Built-up Ratio (NDBI) (Zha, et al., 2003), 

Urban Index (UI) (Kawamura, et al., 1996), and Index-based Built-up Index (IBI) (Xu, 2008). These indices are 

given by the following equations: 
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NDBI =
(𝑆𝑊𝐼𝑅 −  𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)
 

(11) 

 

𝑈𝐼 =  
𝑆𝑊𝐼𝑅_2 −  𝑁𝐼𝑅

𝑆𝑊𝐼𝑅_2 +  𝑁𝐼𝑅
 

(12) 

𝐼𝐵𝐼 =  

2𝑆𝑊𝐼𝑅
𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅 − (

𝑁𝐼𝑅
𝑁𝐼𝑅 +  𝑅𝐸𝐷 +

𝐺𝑅𝐸𝐸𝑁
𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅)

2𝑆𝑊𝐼𝑅
𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅 + (

𝑁𝐼𝑅
𝑁𝐼𝑅 +  𝑅𝐸𝐷 +

𝐺𝑅𝐸𝐸𝑁
𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅)

 

(13) 

 

Using the validation data, the metrics of the built-up indices were calculated and given by the table below: 

Table 2. Calculated Metrics for Built-up Indices 

Built-up Index Silhouette Score Jeffries-Matusita Distance 

MGPBI 0.56 1.99 

NDBI 0.12 1.99 

UI 0.15 1.98 

IBI 0.15 1.99 

 

It can be also observed from Table 2 that MGPBI garnered the highest score among the built-up indices. 

5. CONCLUSION AND FUTURE WORK 

Given the many applications of spectral indices, a Memetic Genetic Programming Algorithm was developed to 

search for spectral indices. The flow of the algorithm along with its operators were discussed.  Two measures of 

quantifying the quality of the spectral index were discussed: Silhouette Score and the Jeffries-Matusita Distance. 

Two indices were developed using the algorithm: Memetic Genetic Programming Vegetation Index and Memetic 

Genetic Programming Built-up Index. These generated indices were compared to other indices using the measures 

of index quality described in the paper. It was observed that both indices perform better than the others. 

 

The developed algorithm still has room for improvement. Many hyperparameter value combinations have not 

been tried out. Spectral indices for features currently without indices could also be discovered using the algorithm. 

In a future study, the derived indices will be used as a form of feature extraction to improve the performance of 

machine learning classifiers in land cover classification 
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