
OSv-MPI: A prototype MPI implementation for the OSv
cloud operating system

∗

Joseph Anthony C. Hermocilla
Institute of Computer Science
College of Arts and Sciences

University of the Philippines Los Baños
jchermocilla@up.edu.ph

Eliezer A. Albacea
Institute of Computer Science
College of Arts and Sciences

University of the Philippines Los Baños
eaalbacea@up.edu.ph

ABSTRACT

In this paper we present OSv-MPI, a prototype MPI im-
plementation to enable HPC applications that use the MPI
standard to run on virtual machines with OSv, a new cloud
operating system, as guest. OSv-MPI provides a library that
can be linked to existing MPI applications and a set of utili-
ties to execute the resulting binaries in an OSv instance. We
tested our implementation using simple applications that use
the primitives MPI Send() and MPI Recv() and show that
correct results are obtained. We also present CPU usage
statistics while running some of the applications.

CCS Concepts

•Networks → Cloud computing; •Computer systems

organization → Cloud computing; Client-server ar-

chitectures; •Software and its engineering → Mes-

sage passing; Massively parallel systems;

1. INTRODUCTION
Computational scientists usually run their high-performance

computing (HPC) applications on dedicated supercomput-
ers or physical clusters. To speed up computations, parallel
processing is used. A parallel programming environment is
composed of a job scheduler, process manager, and parallel li-
brary. The job scheduler describes which resources(compute
nodes) a parallel job, which consists of multiple processes,
will run. The process manager starts and ends processes as-
sociated with the parallel job. The parallel library provides
processes a mechanism to communicate[2]. Several paral-
lel programming environments exist but the most popular
and widely used is the Message Passing Interface (MPI)
standard[4]1. Open source implementations of MPI exists

∗Code:http://srg.ics.uplb.edu.ph/resources/downloads/osv-
mpi-source-ncite2016.zip
1https://www.mpi-forum.org/docs

such as MPICH2 and OpenMPI3. These implementations
are available for various hardware architectures and operat-
ing systems.

Physical clusters however are expensive to procure, setup,
and maintain. They are composed of physical machines
(with their own power, CPU, main memory, and secondary
storage) that are connected via high-speed networks such
as Gigabit Ethernet or Infiniband. Cloud computing, In-
frastructure as a Service (IaaS) in particular, provides an
alternative such that setup and maintenance costs are re-
duced because of on-demand provisioning of virtual ma-
chines(VM)[8][1]. Cloud providers allow users to start and
terminate VMs that run general-purpose desktop or server
operating systems as guest. VMs are booted with disk im-
ages specific to a virtualization product such as KVM4,
Xen5, or VirtualBox6. Figure 1 shows the list of disk images
supported by the P2C cloud[6].

A running VM in a cloud is often referred to as instance.
Virtual clusters are the equivalent of physical clusters in the
the cloud. Amazon EC27, Microsoft Azure8, and Google
CE9 are popular commercial or public cloud providers which
provide customers access to VMs and clusters for a fee. Pri-
vate clouds, which are used internally in an organization, are
also common in research and academic institutions. These
private clouds are deployed using open source cloud frame-
works such as OpenStack10(Figure 2). Instances in the cloud
can run HPC applications as long as the guest operating sys-
tem supports an MPI implementation. Figure 3 shows an
example MPI application running on a virtual cluster using
MPICH[6].

The adoption of the cloud for running HPC applications
however is still limited[9]. Since virtualization adds another
layer (the hypervisor) above the physical hardware, some
performance degradation is inevitable, particularly in the
networking stack. In addition, general-purpose operating
systems that run on the virtual machines add more abstrac-
tion layers (process management, file system, networking,
etc), further degrading performance. To address this, sev-
eral approaches have been proposed in the literature and

2https://www.mpich.org
3https://www.open-mpi.org
4http://www.linux-kvm.org
5https://www.xenproject.org
6https://www.virtualbox.org
7https://aws.amazon.com/ec2
8https://azure.microsoft.com
9https://cloud.google.com/compute

10https://www.openstack.org

Proceedings of the 14th National Conference on IT Education (NCITE 2016) 203

—

Figure 1: Disk images available on the P2C private

cloud.

Figure 2: Dashboard of the P2C private cloud based

on OpenStack.

one of which is the development of new operating systems
that is optimized for virtual machines[3]. OSv from Cloudius
Systems is one such operating system[7].

Our contribution presented in this paper is OSv-MPI, a
prototype MPI implementation to enable HPC applications
that use the MPI standard to run on virtual machines with
OSv as the guest operating system. A summary of the fea-
tures of OSv relevant to the design and implementation of
OSv-MPI is presented in the next section. The rest of the
paper discusses the design and implementation of OSv-MPI,
as well as some test results.

2. OSV
OSv’s design attempts to eliminate unnecessary OS ab-

stractions that are not needed when running applications or
services in the cloud. It follows a one-application-to-one-VM
model and lets the hypervisor performs the process isolation
instead of the guest operating system[7]. By using a single
address space for all the threads and the kernel itself, costly
context switches are eliminated. Other features of OSv that
are relevant to our work are the following:

• OSv does not use spinlocks and implement lock-free
algorithms in the kernel instead. All work in the kernel
are also done in threads using mutexes. This ensures
that performance does not suffer.

• OSv supports the ELF format and thus can execute
Linux binaries linked with glibc. A dynamic linker re-
solves calls to the Linux ABI to OSv functions imple-
mented in the OSv kernel. In order to provide compat-

Figure 3: A hello world application running on a

virtual MPI cluster deployed on P2C.

Figure 4: OSv web admin interface.

ibility, OSv emulates many of the Linux programming
interface.

• For the filesystem, OSv has the traditional virtual file
system (VFS) design and uses ZFS. Other filesystems
are also implemented such as ramfs, devfs, and procfs.

• The networking subsystem of OSv uses network chan-
nels. It is a single producer/single consumer queue for
transferring packets to the application thread. This re-
duces lock contention thereby improving network per-
formance. All of these are exposed through the socket
API.

• The thread scheduler in OSv is designed to be lock-
free, preemptive, tick-less, scalable, and efficient. OSv
also supports the pthread library.

• OSv provides a REST API to allow users to interact
with a running instance. OSv also has a web based
admin interface(Figure 4) to an instance accessible at
TCP port 8000 and a command line interface (CLI)
(Figure 5) connecting to the same port. The CLI sup-
ports a limited set of commands such as ls and cat.

3. OSV-MPI DESIGN
OSv-MPI’s design allows existing MPI applications to run

on OSv with minimal, if no modifications unless there are

204 Hermocilla and Albacea: OSv-MPI: A prototype MPI implementation for the OSv cloud operating system

Figure 5: OSv command line interface via REST

API.

Figure 6: Architecture of OSv-MPI.

dependencies that are not fully supported in OSv. Thus, a
familiar interface is provided to the users. There are three
main components in OSv-MPI, namely osvmpd, osvmpi, and
bootstrap utilities. Figure 6 shows the architecture of OSv-
MPI. Rounded rectangles represent an OSv instance. Rect-
angles represent MPI applications and osvmpd processes.
We constrained, for now, that only one MPI application
connects to an osvmpd process. All communications be-
tween the components use TCP sockets. The components
are described in the subsections that follow.

3.1 osvmpd
osvmpd provides the runtime environment on which MPI

applications connect. osvmpd must be started first before
MPI applications are run. One osvmpd process is desig-
nated as the master while the rest are slaves. At startup,
the master reads the hosts file and uploads it, together with
the osvmpd binary, to the other nodes, whose addresses are
specified in the hosts file. The master then waits for in-
coming connections from MPI applications or peer osvmpd
processes. The slaves on the other hand, once started, load
the hosts file to determine the address of the master. Slaves

then send messages to the master to get their ranks and the
total number of nodes in the cluster. They then wait for
connections from MPI applications (Listing 1).

Listing 1: Function executed by slave osvmpd pro-

cesses.

void do slave mpd (){
char re sponse [1 0 2 4] ;
char temp str [2 5 6] ;
h l=l oad ho s t s (”hos t s . osvmpd”) ;
s t r cpy (master ip , hl−>i p add r e s s [0]) ;
s end to (master ip ,MPD PORT, ”GETMPDRANK” ,

response) ;
s p r i n t f (temp str , ”mpd rank : %s ” , re sponse) ;
my rank=a to i (re sponse) ;
send to (master ip ,MPD PORT, ”GET NUMNODES”

, re sponse) ;
s p r i n t f (temp str , ”num nodes : %s ” , re sponse) ;
num nodes=a t o i (re sponse) ;
send to (master ip ,MPD PORT, ”GET RANK TABLE”

, re sponse) ;
s p r i n t f (temp str , ” rank tab l e : %s ” , re sponse) ;
comm listen () ;

}

3.2 osvmpi
osvmpi is the library to which MPI applications are linked.

In Figure 6, hello mpi is the MPI application that is linked
to the osvmpi library. In the current version of the pro-
totype, the following functions from the MPI standard are
implemented as part of osvmpi (Listing 2).

Listing 2: MPI functions implemented in OSv-MPI.

int MPI Init (int ∗argc , char ∗∗∗ argv) ;
int MPI Comm size (MPI Comm comm, int ∗ s i z e) ;
int MPI Comm rank(MPI Comm comm, int ∗ rank) ;
int MPI Send (const void ∗buf , int count ,

MPI Datatype datatype ,
int dest , int tag , MPI Comm comm) ;

int MPI Recv (void ∗buf , int count ,
MPI Datatype datatype , int source ,
int tag , MPI Comm comm,
MPI Status ∗ s t a tu s) ;

int MPI Final ize (void) ;

3.3 bootstrap utilities
bootstrap utilities, osvmpd-start.sh andmpirun-osv.sh, en-

able the MPI applications to be started and executed in
OSv. These are equivalent to the traditional mpdboot and
mpiexec commands found in most popular MPI implementa-
tions. osvmpd-start.sh starts osvmpd while mpirun-osv.sh
executes the MPI application specified as parameter. These
scripts make use of curl11 to interact with the REST API
of OSv.

4. OSV-MPI IMPLEMENTATION
Implementing OSv-MPI presents some challenges. The

development machine used is a four-core Intel Core i3-2100

11https://curl.haxx.se

Proceedings of the 14th National Conference on IT Education (NCITE 2016) 205

Figure 7: Log output contained in osvmpd.log.

at 3.10GHz with 4GB RAM running Ubuntu 14.04 LTS.
OSv was written in C++ and some Lua scripts. The source
code for OSv was cloned from Github12 and version 0.17
was checked out. This version was used since it is the latest
version that worked with the P2C used for testing. After
cloning, a script was executed which downloaded the depen-
dencies needed to build the OSv VM image. The image was
built with the web and the CLI interface modules. After the
build, the image (about 26.7MB in size) was uploaded to
P2C as osv-cli-v0.17.jach (Figure 1). The uploaded image
can now be used to create OSv instances for testing. As
shown in Figure 2, three instances were created for testing
namely, osv-cli-master, osv-cli-slave-01, and osv-cli-slave-02.
Each instance is allocated 1 virtual cpu, 512MB of memory,
and 21GB disk space.

Binaries for osvmpd and osvmpi were built on the devel-
opment machine using the make utility since there are no
development tools inside an OSv instance. The generated
binaries work in OSv because of the effort of its developers
to provide application binary compatibility with Linux as
discussed previously.

4.1 Logging
There is no remote terminal access (such SSH) to an OSv

instance thus it is difficult to debug OSv-MPI. A logging
library, implemented in log.c, was created to record events
during execution. Sample log output from osvmpd.log is
shown in Figure 7.

4.2 Hosts file
In order to specify the hosts that belong to a cluster, a

hosts.osvmpd file must be created which contains the IP ad-
dresses of the OSv instances. The first entry in the hosts file
is designated as the master node.

4.3 REST utilities
The primary interface to an OSv instance is via a REST

API, thus utility functions were created to perform HTTP
related operations. For instance, to perform file upload, a
function using the HTTP POST request method was imple-
mented in http utils.c. This function is used by the master
osvmpd process to upload a copy of its binary to slave nodes.

4.4 Interprocess Communication
12https://github.com/cloudius-systems/osv

In osvmpd, the communication routines are implemented
in the comm listen() function in comm.c. Low-level commu-
nication is done through TCP sockets using the select() sys-
tem call. This allows multiple clients to connect without us-
ing threads. osvmpd processes listen on three ports(Figure 6).
MPI PORT waits for data coming from an MPI process.
MPD PORT listens for data from peer osvmpd processes.
CONSOLE PORT accepts the standard output (stdout) of
MPI applications. The output are then consolidated on
the master osvmpd process in a file named stdout.txt. This
serves as the final output of a run.

In osvmpi, the MPI process has a listener thread that
waits for data from peer MPI applications. This listener is
initialized in the MPI Init() function implementation after
the process table structure has been received from the mas-
ter osvmpd process. process table maps the rank of an MPI
application to the IP address of the node it is running. This
enables an MPI application to directly send data to peer
MPI applications through the MPI PORT(Figure 6). Thus,
data is no longer passed through the osvmpd process where
the MPI applications are attached, reducing transfer time.

5. EVALUATION
To test our implementation, we compiled some example

MPI applications and linked them to the OSv-MPI library
(osvmpi.a in Listing 3). We then used the bootstrap utilities
to execute them on the three-node OSv cluster in P2C with
the IP addresses in hosts.osvmpd. The output shown in the
figures were captured by connecting to the CLI of the master
node where stdout.txt is generated by the master osvmpd
process. Listing 3 shows the commands to build and execute
MPI applications using OSv-MPI.

Listing 3: Compiling, linking, and executing MPI

applications on the development machine.

$gcc −std=gnu99 −p i e − f p i e −rdynamic \
−Wall −c −o he l l o mpi . o he l l o mpi . c

$gcc −o he l l o mpi . exe \
−std=gnu99 \
−p i e − f p i e \
−rdynamic \
−Wall he l l o mpi . o −pthread \
−l j s on−c osvmpi . a

$. / osvmpd−s t a r t . sh
$. / mpirun−osv . sh −np 3 −f hos t s . osvmpd \

−x he l l o mpi . exe

5.1 Hello World
The hello world application simply outputs the rank of

a process. As shown in Figure 8, initially the stdout.txt
file is not found. This is because the execution of the MPI
applications have not yet completed. On the fourth try, the
final output is finally shown.

5.2 Send-Receive
The send-receive application shows an example exchange

of numbers between two MPI application processes. Process
0 sends 100 to Process 1. Process 1 increments the data
it received from Process 0, then sends back the result to
Process 0 (Figure 9).

206 Hermocilla and Albacea: OSv-MPI: A prototype MPI implementation for the OSv cloud operating system

Figure 8: Sample run of the hello world application.

Figure 9: Sample run of send-receive application.

Figure 10: Source for the pingpong application.

Figure 11: Sample run of the pingpong application.

5.3 Pingpong
A more complex example, pingpong, performs exchange

of data between two processes for 20 iterations. The source
and sample run are shown in Figure 10 and Figure 11 re-
spectively.

To get an idea of how much system resources are used,
we observed the CPU usage on the master node during the
run of the pingpong example through the web admin inter-
face. The result is shown in Figure 12. Other processes
were hidden to show only the osvmpd.exe process and the
pingpong.exe process. As can be seen in the figure, >ping-
pong.exe consumes as much as 96.9% of the CPU. >ping-
pong.exe is the thread that listens for connections and keeps
the CPU busy.

Figure 12: CPU usage during the execution of the

pingpong application.

Proceedings of the 14th National Conference on IT Education (NCITE 2016) 207

6. RELATED WORK
There are several existing MPI implementations that are

more advanced than OSv-MPI13. Some hardware vendors,
such as Intel14, also provide implementations optimized for
their machines. In this review of related work, we focus on
OpenMPI. OpenMPI addresses issues that are arising from
modern machine architectures and networking technologies.
Unlike OSv-MPI which supports TCP/IP only, OpenMPI
supports other interconnect such as Infiniband, MyriNet,
and shared memory. It is also able to gracefully handle net-
work failures. OpenMPI follows a component architecture
composed of the MCA backbone, component frameworks,
and modules[5].

Porting existing MPI implementations such as OpenMPI
to OSv was considered. However, due to the complexity
(many abstraction layers) of these implementations, the au-
thors decided to implement a simplified version, OSv-MPI,
that adheres to OSv’s original design considerations.

7. CONCLUSION AND FUTURE WORK
We have shown in this work the possibility of running

HPC applications that use the MPI standard can be achieved
in OSv through OSv-MPI. This will provide an alternative
guest operating system to use when running HPC applica-
tions in the cloud.

In the future, additional functions from the MPI standard
will be implemented such as MPI BCast() and MPI Gather()
for collective operations. Also, MPI benchmarks tools need
to be executed against OSv-MPI to evaluate its performance
and scalability. Finally, security will be enhanced particu-
larly during message transfers.

8. ACKOWLEDGMENTS
This work is supported by the Philippine Department of

Science and Technology Accelerated Science and Technol-
ogy Human Resource Development Program. The authors
would like to thank Dr. Vladimir Y. Mariano, Dr. Zita VJ.
Albacea, Dr. Marlon N. Manalo and the reviewers for their
comments.

9. REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, and I. Stoica. A view of cloud computing.
Communications of the ACM, 53(4):50âĂŞ58, 2010.

[2] R. Butler, W. Gropp, and E. Lusk. Components and
interfaces of a process management system for parallel
programs. Parallel Computing, 27(11):1417–1429, 2001.

[3] F. Diakhate, M. Perache, R. Namyst, and H. Jourdren.
Efficient shared memory message passing for inter-VM
communications. In Euro-Par 2008 Workshops-Parallel
Processing, pages 53–62. Springer, 2008.

[4] C. T. M. Forum. MPI: a message passing interface. In
Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, pages 878–883, Portland, Oregon,
USA, 1993. ACM.

[5] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,

13http://www.mcs.anl.gov/research/projects/mpi/implementations.html
14https://software.intel.com/en-us/intel-mpi-library

B. Barrett, A. Lumsdaine, and others. Open MPI:
Goals, concept, and design of a next generation MPI
implementation. In European Parallel Virtual
Machine/Message Passing Interface UsersâĂŹ Group
Meeting, pages 97–104. Springer, 2004.

[6] J. A. C. Hermocilla. P2c: Towards scientific computing
on private clouds. In Proceedings of the 12th National
Conference on IT Education (NCITE 2014), pages
163–168. Philippine Society of Information Technology
Educators, Oct. 2014.

[7] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El,
D. Marti, and V. Zolotarov. OSv-optimizing the
operating system for virtual machines. In 2014 usenix
annual technical conference (usenix atc 14), pages
61–72, 2014.

[8] P. Mell and T. Grance. The NIST definition of cloud
computing (draft). NIST special publication,
800(145):7, 2011.

[9] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. Epema. A performance analysis of
EC2 cloud computing services for scientific computing.
In Cloud Computing, pages 115–131. Springer, 2010.

208 Hermocilla and Albacea: OSv-MPI: A prototype MPI implementation for the OSv cloud operating system

