
ICS-OS: A Kernel Programming Approach to Teaching
Operating System Concepts⇤

Joseph Anthony C. Hermocilla
Institute of Computer Science
College of Arts and Sciences

University of the Philippines Los Baños
College 4031, Laguna, Philippines
jachermocilla@uplb.edu.ph

ABSTRACT
Traditional approaches to teaching operating systems re-
quire students to develop simulations and user space ap-
plications. An alternative is to let them modify parts of an
actual operating system and see their programs run at ker-
nel space. However, this is di�cult to achieve using modern
real-world operating systems partly because of the complex
and large source code base. This paper presents ICS-OS
and the experiences and results of using it for teaching an
undergraduate operating systems course. ICS-OS is based
on the DEX-OS kernel which has a smaller source code base
compared to mainstream operating systems, making it ideal
for instruction. The students were able to demonstrate a
deeper understanding of how a real operating system works
by their succesful implementation of projects to enhance and
extend ICS-OS.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design
; K.3.2 [Computer and Information Science Educa-
tion]: Computer Science Education

Keywords
Operating systems, computer science education, kernel

1. INTRODUCTION
Operating systems is a core knowledge area in computer sci-
ence education emphasized by the ACM and IEEE review
task force for the computer science curriculum. Traditional
approaches to teaching operating systems to undergradu-
ates, as in the case at the author’s institution, do not in-
volve programming the components of an actual operating
system that can run on real hardware. Instead, simulations
are used or user space application development are done.

⇤ICS-OS is an open source project hosted at
http://code.google.com/p/ics-os/

Students, however, are more interested in writing code that
runs at the kernel space, internal to the operating system
itself. They want to concretize the abstract concepts in op-
erating systems through kernel code. To achieve this, either
the students can build an operating system from scratch[5]
or modify an existing one.

Building an operating system from scratch is not the best
option since a course is usually o↵ered for a semester and
there is not enough time to finish. In addition, the prereq-
uisite knowledge needed to make an operating system may
have not been acquired by the students yet. To write an op-
erating system from scratch, one has to have knowledge of
the processor architecture, assembly language, data struc-
tures, algorithms, and low-level C programming.

Modifying an actual operating system that runs on real
hardware is a more viable alternative. However, the choice
of the operating system to use is still an issue. In the past,
several instructional operating systems have been proposed
and developed. The next section briefly reviews some of
them to highlight their strengths and weaknesses.

Two possible criteria for choosing the operating system to
use are completeness and size of the source code base. An in-
structional operating system that does not implement high
level abstractions like process management, memory man-
agement, and filesystems will unlikely be a good choice be-
cause of the missing features. On the other hand, an oper-
ating system with several thousands of lines of code and a
complicated source directory structure will confuse students
and will take more time to understand. Thus there should
be a right balance between completeness and code size.

Recent developments in hardware emulation and virtualiza-
tion have also made it easier to work with real-world oper-
ating systems. Testing a kernel need not require a reboot of
the development machine for testing. Unnecessary boostrap-
ping is no longer needed since the test machine is a software
application running on the development machine itself.

The delivery of an operating systems course is usually through
a lecture and a laboratory component. A popular textbook
used by instructors in the lecture is the dinosaur book by
Silberschatz and Galvin [10]. Typical laboratory activities
involves learning to use a Unix-based operating system, de-
veloping simulations for di↵erent process scheduling algo-

Philippine Information Technology Journal, Vol. 2, No. 2, October 2009 25

7th National Conference on I.T. Education (NCITE 2009)

Capitol University, Cagayan de Oro City, 21-23 October 2009

rithms, understanding the fork() and exec() system calls,
programming using user level threads, and implementing in-
terprocess communication. All of these however are in user
space and do not involve writing kernel code.

This paper presents ICS-OS and the experiences and re-
sults of using it for teaching an undergraduate operating
systems course, specifically in the laboratory, at the Insti-
tute of Computer Science, University of the Philippines Los
Baños. The students who took the course are in their third
year and have completed the data structures and assembly
language prerequisite courses.

2. RELATEDWORK
Several instructional operating systems have been proposed
and developed in the past[4]. This section briefly describes
the popular ones to highlight their suitability for instruction.
Mainstream operating systems such as Linux and BSD were
not considered because they are too complicated already for
use in teaching.

2.1 Minix
Minix[11] has been around for several years already and has
been the running example in a textbook[12]. It is based on
Unix, POSIX compliant, and runs on real hardware. Since
its initial release, Minix has grown in size in terms of source
code as well as in complexity which makes it di�cult to use
for teaching, given the advanced features like networking
support.

2.2 Nachos
Nachos[6] is instructional software for teaching undergradu-
ate, and potentially graduate, level operating systems courses.
The Nachos kernel and hardware simulator runs as Unix pro-
cesses implemented in C++. A success story in using Nachos
for teaching is described by Gary [8]. The fact that Nachos
runs as Unix processes limits its appeal because it cannot
run on real hardware and is dependent on the host system.

2.3 GeekOS
GeekOS[9] is an instructional operating system that runs on
real hardware. The design goals for GeekOS are simplicity,
realism, and understandability. Its main features include in-
terrupt handling, heap memory allocator, time-sliced kernel
threads with static priority scheduling, mutexes and condi-
tion variables, user mode with segmentation-based memory
protection, and device drivers for keyboard and VGA.

2.4 DEX-OS
DEX-OS[7, 2] is an educational operating system based on
an aspect-oriented approach to address cross-cutting con-
cerns in operating systems design and implementation. The
main components of DEX-OS are memory manager, process
manager, device manager, and virtual file system. DEX-OS
runs on the Intel 386 platform in 32-bit protected mode.

3. ICS-OS OVERVIEW
Similar to the Linux philosophy, ICS-OS can be considered
as a distribution that is based on the DEX-OS kernel. ICS-
OS provides an environment for learning operating systems

Figure 1: Booting ICS-OS.

Figure 2: ICS-OS shell.

by kernel programming. A set of tools and utilities are pack-
aged with ICS-OS to make it easy for students to write,
modify, and test kernel code.

ICS-OS is generally divided into two main components, the
kernel and user applications. The kernel is loaded at bootup
using GRUB as the bootloader. Figure 1 shows ICS-OS
booting. Essentially, the kernel stays in the main mem-
ory of the computer until shutdown. Since GRUB supports
compressed kernel images, the size of the kernel binary is
further reduced, correspondingly the distribution size. ICS-
OS can thus fit in a single floppy disk. User applications,
on the other hand, are loaded by the user manually through
the shell or by initialization scripts. The shell in ICS-OS is
implemented as part of the kernel (Figure 2).

These two components provide a diverse area for experi-
mentation by the students. They can work on the kernel or
develop user applications. A software development kit and
a minimal C standard library is provided for programming
applications. Figure 3 shows the ls command being executed
by the shell.

4. TEACHINGWITH ICS-OS
4.1 Development Environment
A convenient environment for operating system kernel devel-
opment is essential. The compilers, assemblers, build tools,
disk utilities, and emulators should be readily available on

26 Hermocilla: ICS-OS: A Kernel Programming Approach to Teaching Operating System Concepts

Figure 3: Executing the internal ls command.

the development machine. A Linux system can provide all
these tools. Thus, the laboratory computers were refor-
matted and Ubuntu was installed. The following additional
packages were also added to complete the setup.

• Make

• GCC/TCC

• NASM

• Bochs

• VirtualBox

• Subversion (optional)

4.2 Student Activities
After the development environment was ready, students were
given activities to familiarize themselves with the source
code of ICS-OS. ICS-OS was written in the C programming
language and some assembly language.

4.2.1 Bootloader and Intel 386 Protected Mode
This activity, although not directly related to ICS-OS source
code, was conducted in order for the students to understand
how a PC boots, and eventually loads an operating system
kernel. They were asked to develop a simple bootloader
using assembly language. The exercise was then extended
so that the CPU is switched into the protected mode instead
of the default real mode. This is because modern operating
systems run in protected mode, as with the case of ICS-OS.

4.2.2 Download, build, and test
The first activity was to download the source code of ICS-
OS[3]. The source code is distributed in a tar.gz file and
via Subversion. After extracting, students built and tested
ICS-OS using the commands below.

(1) $make
(2) $sudo make install
(3) $bochs -q

Figure 4: Executing the newly created hello internal
command.

The first command creates the kernel binary in ELF format.
The second command builds the distribution floppy image
using the loopback device for mounting, and thus requires
administrator privileges, so the sudo command is used. The
third command starts Bochs[1] which loads ICS-OS (see Fig-
ure 1).

4.2.3 Add a new shell command
The best way to understand how ICS-OS works internally
is to start with the shell since it contains the commands the
users can use to access the operating system services. Thus,
in the next activity, students modified the kernel, specifically
the shell, by adding an internal hello shell command. The
students were directed to navigate to the console source code
(kernel/console/console.c). They were asked to modify the
function console execute() by adding the following simple
code fragment.

/*--START--*/
if (strcmp(u,"hello")==0)
{
printf("Hello World command!\n");

}
else
/*--END--*/

The result of this activity is shown in Figure 4.

4.2.4 Develop user applications
Application development in ICS-OS is done via a software
development kit. The externally callable functions and sys-
tem calls are implemented in the file sdk/tccsdk.c. User pro-
grams are linked against this file to generate the executable
code that is compatible and runnable within ICS-OS. To
ease the development process, a Makefile template was cre-
ated to perform the build automatically. As an example, the
Makefile for the hello.exe application is shown below.

CC=gcc
ICSOS_ROOT=../..
SDK=../../sdk
CFLAGS=-nostdlib -fno-builtin -static

Philippine Information Technology Journal, Vol. 2, No. 2, October 2009 27

Figure 5: Executing the hello.exe application inside
ICS-OS.

LIBS=$(SDK)/tccsdk.c $(SDK)/libtcc1.c $(SDK)/crt1.c
EXE=hello.exe
$(EXE): hello.c

$(CC) $(CFLAGS) -o${EXE} hello.c $(LIBS)
install: $(EXE)

cp $(EXE) $(ICSOS_ROOT)/apps
uninstall:

rm $(ICSOS_ROOT)/apps/$(EXE)
clean:

rm $(EXE)

For the activity, the students were asked to develop the
hello.exe application, which is not part of the shell but can
still be executed within ICS-OS. First they created the hello/
folder relative to the contrib/ directory and copied the sam-
ple Makefile in it. The Makefile for hello.exe is shown above.
Then, the hello.c source file, which contains the application
logic, was coded inside the hello/ folder. The application
was built and installed using the commands below.

(1) $make
(2) $make install

The install target in the Makefile will simply copy the exe-
cutable to the apps/ folder. It is only after the distribution
floppy image is created that the application will be available
inside ICS-OS for execution (see subsection 4.2.2). Figure 5
shows the output of hello.exe.

4.2.5 Add a new system call
The last guided activity for the students was to add a sys-
tem call. System calls are the primary mechanism to access
the services provided by an operating system. The students
were directed to open kernel/dexapi/dex32API.c and add
the following function definition.

int my_syscall(){
printf("My own system call got called!\n");
return 0;

}

Figure 6: Executing the syscall.exe application in-
side ICS-OS.

Then, the function api init() was modified by adding a call
to api addsystemcall(). The system call number chosen for
my syscall(), in this example, is 0x9F.

api_addsystemcall(0x9F,my_syscall,0,0);

A user application, syscall.exe with code shown below, was
developed to test the new system call directly by invoking
it through the number. Figure 6 shows the result of the
execution.

int main()
{
dexsdk_systemcall(0x9F,0,0,0,0,0);
return 0;

}

4.2.6 Student Projects
The previous activities were designed to familiarize the stu-
dents with the code base of ICS-OS. To fully demonstrate
their understanding of the concepts, they were asked to sub-
mit project proposals to extend or enhance ICS-OS. The
project proposals may be system programs or application
programs that can run inside ICS-OS. The following list
some of the projects proposed and implemented by the stu-
dents.

• Simple graphical user interface (see Figure 7)

• Standalone shells with advanced features, such as his-
tory

• Text editor

• Archiving utilities

• Help system (similar to man in Unix)

• Time/Date utilities

• File search utilities

• Disk utilities

28 Hermocilla: ICS-OS: A Kernel Programming Approach to Teaching Operating System Concepts

Figure 7: A VGA based splash screen for ICS-OS.

• File splitters

• Enhanced process viewers

• Image viewers (see Figure 8)

• Simple interpreters

• Dictionary/Spelling utilities

5. RESULTS AND OBSERVATIONS
Overall, the students were able to appreciate how an oper-
ating system works with the use of ICS-OS. Given a prop-
erly setup development environment, documentation, and
instructor guidance, kernel programming can be made easier
for students to enable a deeper understanding of the abstract
concepts.

However, during the course was o↵ered, the following obser-
vations were noted. First, not all students are fluent in C
programming. Some students have never worked on a rel-
atively large source code base and were lost easily in the
directory structure of ICS-OS. Second, during the project
proposal stage, students proposed ambitious projects that
eventually did not get implemented. Lastly, during the im-
plementation phase of the projects, some of the common
functions needed by the students for their programs are not
yet implemented. One such function is scanf(). Thus, stu-
dents need to find alternative functions, such as gets(), to
get input from the user or implement the missing functions
on their own.

The use of ICS-OS in teaching operating systems concepts,
however, has achieved the following objectives for the stu-
dents.

• They learned how an operating system works from the
bare metal (real hardware/emulator).

• They were able to see the big picture on how a com-
puter system works.

• They were able to understand the separation of kernel
space and user space.

• They were able to understand how programs are loaded
and how processes are created and executed.

Figure 8: Displaying a bitmap.

• They were able to understand how system calls work
and the importance and advantages of using applica-
tion programming interfaces and software development
kits.

6. CONCLUSION
In this paper, the author presented ICS-OS as an instruc-
tional operating system for teaching operating system con-
cepts to undergraduate students through kernel program-
ming. A high success rate in the projects indicates that a
kernel programming approach is better in making students
understand how a real operating system works compared to
just programming simulations and user space applications.

7. ACKNOWLEDGMENTS
The author would like to thank Joseph Emmanuel DL. Dayo
for contributing DEX-OS to the open source community and
the students of CMSC 125, Operating Systems, during the
Second Semester AY 2008-2009 who took the course using
ICS-OS.

8. REFERENCES
[1] Bochs. http://bochs.sourceforge.net/.
[2] DEX Extensible Operating System.

http://sourceforge.net/projects/dex-os/.
[3] ICS-OS: An Instructional Operating System.

http://code.google.com/p/ics-os/.
[4] C. L. Anderson and M. Nguyen. A survey of

contemporary instructional operating systems for use
in undergraduate courses. J. Comput. Small Coll.,
21(1):183–190, 2005.

[5] M. D. Black. Build an operating system from scratch:
a project for an introductory operating systems
course. In SIGCSE ’09: Proceedings of the 40th ACM
technical symposium on Computer science education,
pages 448–452, New York, NY, USA, 2009. ACM.

[6] W. A. Christopher, S. J. Procter, and T. E. Anderson.
The Nachos Instructional Operating System.
Technical report, Berkeley, CA, USA, 1993.

[7] J. E. Dayo and C. L. Khan. DEX-OS: An
Aspect-Oriented Approach in Developing an
Educational Extensible Operating System for the IBM
PC and Compatibles. In Proceedings of the 4th

Philippine Information Technology Journal, Vol. 2, No. 2, October 2009 29

Philippine Computing Science Congress. Computing
Society of the Philippines, 2004.

[8] J. E. Gary. Using Nachos in an upper division
operating systems course. J. Comput. Small Coll.,
18(2):337–345, 2002.

[9] D. Hovemeyer, J. K. Hollingsworth, and
B. Bhattacharjee. Running on the bare metal with
GeekOS. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science
education, pages 315–319, New York, NY, USA, 2004.
ACM.

[10] A. Silberschatz and P. B. Galvin. Operating System
Concepts (5th Edition). John Wiley & Sons, Inc., New
York, NY, USA, 1999.

[11] A. S. Tanenbaum. A UNIX clone with source code for
operating systems courses. SIGOPS Oper. Syst. Rev.,
21(1):20–29, 1987.

[12] A. S. Tanenbaum and A. S. Woodhull. Operating
Systems Design and Implementation (3rd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2005.

30 Hermocilla: ICS-OS: A Kernel Programming Approach to Teaching Operating System Concepts

