
2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 1

Parallel FlowViz
Angel Manica V. Raquel and Joseph Anthony C. Hermocilla

Abstract— This project improved FlowViz, a flood simulation
software. It applied the concepts of parallel computation to adapt
for wider area simulations. Using Data Elevation Models or
DEMs as data input this program computes for the possible
catchment areas using the Triangular Multiple Direction (MD∞)
water delineation method and outputs a 3D visual representation
of the waterflow. It was designed to use parallel computation
where the master node was assigned for the division of data
into subgrids which can then be processed by separate nodes
locally and then sent back to the master node for the visual
representation of the data.

Index Terms— Parallel Computing, DEM, Triangular Multiple
Flow Direction Algorithm

I. INTRODUCTION

A. A. Background of the Study

The main aim of this project is to improve FlowViz , a
flood simulation software [1] . The data used in FlowViz was
limited to only the mountain areas of Luzon and this project
will aim to use a larger scope of location in every place in the
Philippines with available Digital Elevation Models(DEMs).
Flood simulation involves a great deal of computation and with
a larger data set, this project seeks to reduce the computation
time by modifying FlowViz to apply parallel computation for
a wider area simulation.

B. B. Statement of the Problem

A flood is a hydrological event characterized by high
discharges and/or water levels that can lead to inundation of
land adjacent to streams, rivers, lakes, wetlands and other
water bodies. It is the costliest natural hazard in the world.
It can cause damage to property and/or human lives. What
is more, there has been an increasing trend associated to the
number of deaths caused by flood [2]. Since floods are mostly
caused by natural factors, the extent of their damages can
be difficult to predict, but with relevant information, planning
ahead can be done to minimize the damages they may bring.

C. C. Significance of the Study

Flood models are used to simulate how rain water flows
overland to determine the probability of flooding [3]. They can
also be used in planning and designing structures so that pre-
emptive measures can be taken in time . Early flood warning
systems serve to save lives, minimize flood damage to prop-
erties and reduce economic and social losses [4]. Awareness
in the probability of flooding in an area should give time to
construct temporary defences, to evacuate people if necessary

Presented to the Faculty of the Institute of Computer Science, University
of the Philippines Los Baños in partial fulfillment of the requirements for the
Degree of Bachelor of Science in Computer Science

and to move valuables from buildings and properties. Also, not
all floods are harmful especially those that are small enough
to just create wetlands which can be useful in agriculture.
FlowViz is software developed to model the surface water
flow over a wide area based on digital elevation models.
Being able to model the surface water flow will allow the
identification of possible catchment areas where flood might
occur in the future. This study will aim to improve FlowViz
by using a different method in catchment computation and by
incorporating the concept of parallel computing.

D. D. Objectives of the study

The main aim of this project is to improve FlowViz.
Specifically, the study aims to:
• Use parallel computation in the simulation,
• Improve the Visualization of the Study Areas, and
• Implement the triangular multiple flow direction (MD∞)

algorithm.

E. E. Date and Place of Study

This study was conducted in the Institute of Computer
Science, College of Arts and Sciences, UPLB from November
2011 to March 2012. Using the MPC cluster, one of the Grid
services provided by the Advanced Science and Technology
Institute (ASTI) High-Performance Computing (HPC) Facility
and Philippine e-Science Grid (PSciGrid).

II. RELATED WORK

Through Digital Elevation Models (DEMs), hydrology de-
termines the path of water/flow directions. One of the earliest
methods in tracing water flow is the D-8 algorithm, which
was introduced by OCallaghan and Mark (1984). This Method
was implemented in FlowViz [1]. Several grid-based flow
routing algorithms have already been presented by different
authors after the development of D8 (Quinn et al. 1991,
Freeman, 1991; Holmgren 1994; Mitasova and Hofierka, 1993;
Mitasova et al. 1995, 1996; Tarboton, 1997). The triangular
multiple direction (MD∞) algorithm presented by Seibert
and McGlynn (2007) combines the benefits of triangular
single direction flow (D∞) and the other multidirectional flow
algorithms. It is more appropriate than the other existing flow
algorithms across a range of landscapes, DEM resolutions
and applications. FlowViz was originally implemented as a
sequential program, and so as many other currently existing
programs. Although the speed at which sequential computers
operate has been improving at an exponential rate for many
years, the improvement is now coming at greater and greater
cost. As a consequence, researchers have sought more cost-
effective improvements by building parallel computers which



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 2

perform multiple operations in a single step [5]. Around 1980,
people believed the use of more efficient processors will best
improve a computers execution but that idea was disputed by
the concept of parallel processing which consequently lead
to making the use of clusters of computers or work stations
as the standard platforms for high performance and large-
scale computing [6]. In 2006, Pabico presented the analytical
model of the parallel implementation of the D8 flow routing
algorithm; performance metrics such as parallel speed up,
parallel efficiency, parallel cost, cost optimal function, and
scalability, under the Parallel Random Access Memory Model
were presented [7]. In a world where parallel processing is
being enhanced, more and more programs are being designed
to use parallel computing especially to problems which in-
volves complex computations and exhaustive memory access
[6]. There had also been a study conducted in the Institute
of Computer Science (ICS) in UPLB for Parallel Stream
Delineation where the triangular single direction flow (D∞)
routing algorithm was also implemented as a parallel program
to trace the flow of water in a terrain, where the program
was successfully performed in DEMs and node clusters of
different sizes [8]. Previous works thus indeed show that the
parallelization and improvement of FlowViz is possible.

III. THEORETICAL FRAMEWORK

A. Digital Elevation Models (DEMs)

The project will make use of DEMs as data input to compute
for the catchment areas. A Digital Elevation Model (DEM) is
a digital representation of a ground surface elevation, It is a
grid of points that can be defined by X and Y coordinates [9].

B. Probability of Precipitation (POP)

Probability of Precipitation (PoP) is the likelihood of mea-
surable precipitation at a particular point during a specified
time period. It is stated as a percentage and is also referred to
as chance of rain or chance of precipitation. Represented as a
grid where the probability of precipitation is specified in each
cell. Each elevation cell in the DEM will have a corresponding
cell in the POP matrix.

C. Triangular Multiple Direction Flow (MD∞) Algorithm

The project will need to be able to trace the flow using
a process that will involve the idea that the water from a
higher grid of elevation will flow to an area of lower elevation.
FlowViz made use of the eight-direction pour point algorithm
or Deterministic 8 model (D-8) to determine the flow direction
[10]. It assigns a flow direction code to each cell, based on the
steepest downhill slope as defined by the DEM. It is a simple
and traditional algorithm which is why it is more commonly
used. D-8 is limited due to obvious reasons-It restricts the
flow of water to only one direction against eight and therefore
somewhat unrealistic.

In April of 2007, Seibert and McGlynn introduced a new
method for computing upslope areas from gridded digital ele-
vation models, the triangular multiple flow direction algorithm
[11]. This project will aim to use this method. Around the

Fig. 1. Illustration of how the neighboring nodes were paired [11].

midpoint (M) of the pixel in question, eight planar triangular
facets are constructed with midpoints (P1 and P2) of two
adjacent pixels (Figure 3). The slope direction of each of these
triangular facets is then calculated. For directions pointing
between P1 and P2 the flow is distributed to the two cells
on the basis of the direction of the steepest slope.

D. Parallel Computing

Parallel computing in simple terms is using more than one
computing processor to solve one problem. This is accom-
plished by breaking the problem into independent parts so that
each processing element can execute its part of the algorithm
simultaneously with the others. It is very useful in problems
which involve complex computations [12].

IV. MATERIALS

Software Interface
• GLUT/xf86vmode (OpenGL Utility Toolkit)
• GDAL (a software library that makes it easy to read and

write raster geospatial data formats)
• GCC (C source code compiler)
• MPICH (provides interfaces to send/receive data and

synchronise operations between the multiple tasks of a
parallel application)

V. METHOD

A. Cluster Setup

A cluster of computers from DOST-ASTI(Advanced Sci-
ence and Technology Institute) was used for this study. The
cluster can have up to 30 nodes but they are not all readily
available unless requested with each node having the standard
MPICH installed so as GDAL. The cluster was accessed
using Secure Shell which is a network protocol that allows
data to be exchanged using a secure channel between two
networked devices without the requirement of a password. The
cluster of computers was setup using a master-slave network
configuration by the ASTI staff.



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 3

Fig. 2. Illustration of how the water flow was distributed [11].

B. Data Management

The data extracted from the DEMs were partitioned into
subgrids depending on the number of processors required by
the current run from the cluster. The data is extracted in
the form of a one-dimensional array. The subgrids were then
distributed to the nodes where each node will perform the
water flow computation on their local grids. These local girds
were partitioned in such a way that the data is overlapping so
that in the computation of the traceflow, it will be as though
the data is continuous and not partitioned. The approach
used in this study for the data partition was that the data
was initially divided into half and then was further divided
until the data division reaches the desired number of partition
depending on the number of nodes. Simple blocking point-
to-point communication was used throughout the study of the
communication of the nodes using the commands MPI Recv
and MPI Send.

The data was sent as an array over the cluster and it’s the
job of the slave nodes to convert the allotted arrray sent to
them to a structure which will then be later used for the
computation. For each of the cell in the local subgrid, the
flow direction was computed for each of the neighboring cells.
Triangular facets (phases) were used for the computation for
each of the neighboring nodes. For each cell in the localgrid,
the values of its neighboring nodes were gathered and stored
as an array. The array of the current cell was passed to a
function which computes for the steepest direction using the
triangular multiple flow direction algorithm.

C. Local Flow Trace Computation

Each of the neighboring cells was paired to its adjacent
node which will form one of the eight triangular facets with
the midpoint before the computation (see Figure 1 on page 2).

Around the midpoint (M) of the cell, eight planar triangular
facets are constructed with midpoints (P1 and P2) of two
adjacent neighboring cells. For each of these local planes the
direction of the steepest gradient is computed.

If this steepest direction from M is outside the 45 (p/4
radian) angle range of the particular triangular facet (i.e.,
not between the vectors pointing from M toward P1 and

Fig. 3. 3D rendered image where each node has 1 as value of rainfall.

P2, respectively), the direction with the steeper downslope
gradient, of the two directions toward P1 or P2, is used as
the steepest direction, and the slope is computed between M
and P1 or P2. If both P1 and P2 have higher elevations than
M, both directions, obviously, are excluded. After comput-
ing the steepest downslope directions for all eight triangular
facets, those directions are maintained as the locally steepest
directions that are within the 45 angle range.

After the downslope directions are all computed for a
cell, its accumulated area is distributed to these directions.
Accumulated area is weighted and distributed downslope on
the basis of the gradients. If a downslope direction falls
between two neighboring cells, the area is further distributed
to these two cells according to the relative differences in their
direction.

D. Catchment Computation

After detemining the directions of the flow for each element,
the next step was to the random points of the rainfall. For
each cell with rainfall, the computed direction grid was called
to determine which points will the water flow to. After
determining the directions, the amount of rainfall found in
the current cell was then distributed according to the amount
precentage specified on the next node which was computed
earlier during the flow trace. On this process, two of the flows
are monitored, the catchment flow and the trace flow where the
catchment flow records the final result of each of the cell in
the DEM after the rainfall, whereas the trace flow is concerned
on recording each of the amount of the nodes that was passed
through during the computation. The traceflow mainly was
computed for the image output of the program to determine
the water flow.

E. Data Merging

After computing the catchment areas and the trace flow, the
said local grids are then passed back to the master node where
the master node’s job is to collate the data and call the function
to show the visual representation of the water flow trace. The
MPI receive function was not done in order of the nodes (ex.



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 4

Fig. 4. 500x500 output image generated from 13.2552,123.686 coordinates

node 1 first then node 2), since there is no certainty that node1
will actually the first to finish in the local computation of the
flow. The master node just waits if any of the nodes have
finished computing and then notes the processor name of that
node and collect all of the data needed from that node first
before waiting for the result of the next node until all of the
nodes have finished computing and the master node is done
reconstructing the DEM grid.

F. Visual Representation

The 3D visual representation was rendered only by the
master node using all the data passed to it computed by the
slave nodes.

VI. RESULTS AND DISCUSSION

A. 3D representation

The 3D visual representation of the terrain was rendered
first followed by the flow trace which was rendered using
GL POINTS in shades of yellow (See Figure 3 on page 3).

The software was able to successfully implement the new
triangular multiple flow direction algorithm on flowviz to
calculate the catchment areas for the flow of water thus giving
a more dispersed and realistic trace of the water flow from the
initial straight downward direction flow.

The software also successfully applied data partition using
the parallel programming paradigm and was able to compute
for the catchment areas.

B. Performance Measurements

One of the simplest and most widely used indicators for a
parallel program’s performance is the observed speedup of a
code which has been parallelized.

Sp =
T1

Tp
(1)

In equation(1), P is the number of processors, T1 is the
execution time of the sequential algorithm, and Tp is the
execution time of the parallel algorithm with P processors.
In order to compute for the speedup of Parallel Flowviz, the
researcher created a sequential version of it which is basically
just the original flowviz using the MD∞ algorithm. Then, the

Fig. 5. Comparison of the computation time given by sequential flowviz
MD∞ and parallelflowviz.

Fig. 6. Comparison of Speedup Measurements.

average time Parallel Flowviz and its sequential version took
to execute was recorded for comparison.

Both programs were run on DEMs with dimensions
200x200, 400x400, 600x600, 800x800, and 1000x1000 as
inputs and for the parallel algorithm, 4, 8, 12, 16 and 20
number of processors were used. Figure 5 shows the average
elapsed time of computation for the different sizes of DEM
run through different number of processors. Here, the graph
shows that the parallel algorithm had a much faster elapsed
time of computation than its sequential counterpart.

The ideal speedup, which is linear, is obtained when Sp = P .
Figure 6 shows the speedup for the calculation of water flow
directions using the MD∞ algorithm. There was an inverse
relationship betwee the speedup results and the number of
processor used. The speedup increased as the DEM data size
approach the value 600x600 but it decreased when the DEM
dimension size exceeded the 600x600 dimensions. This is
caused by the increase in the cost of computation between the
nodes as the DEM input size increases, to see the graphical
representation of the comparison of the computation cost see
figure 7.

Cost = Tp ∗ P (2)

The figure shows that the cost of communication is directly
proportional to the number of the DEM data size and there



2ND INTERNATIONAL WORKSHOP ON COLLABORATION BETWEEN FEU AND UPLB 5

Fig. 7. Comparison of Communication Cost.

Fig. 8. Comparison of Efficiency Values

was a notable increase in the cost values when the dimensions
exceeded 600x600. Figure 5 shows the influence of the cost
of communication on the processing time of the nodes when
the DEM size reached past the 600x600 dimension.

Ep =
Sp

P
(3)

In equation (3), the Ep refers to the efficiency of the parallel
program, which is a value between zero and one, that estimates
how well-utilized the processors are in solving the problem
compared to how much effort is being wasted in communica-
tion and synchronization. Algorithms run on a single processor
have an efficiency value of 1.

Figure 8 shows that the efficiency of this algorithm in-
creased as the number of the DEM data size increased but
only up to a certain dimension which is 600x600. Then, the
cost of communication caused the decrease in efficiency of the
algorithm past that data size. Also, the algorithm’s efficiency
is inversely proportional to the number of processors being
used.

VII. CONCLUSION AND FUTURE WORK

The results show that the implementation of parallel com-
puting in Flowviz has improved the elapsed time of computa-
tion. However, it also shows that as the data input increases,
there comes a point when the cost of communication becomes
more costly than the flow computation so it is better to

lessen the number of processors being used. The rendered 3D
image also shows that the Triangular Multiple flow direction
algorithm provided a more realistic visual representation and
catchment computation for the trace of the water flow.

Future modifications of ParallelFlowviz should include into
consideration partition of data not into grids but rather hor-
izontally which would give the program more options when
it comes to the number of processors that can be used and it
would save time during the data partition and data merging
because it will lessen the communication cost per node. A
horizontal partition of data would allow an odd number of
processors during the execution of the program whereas in this
study, the data was immediately divided into half and each half
was then further divided into another half or more depending
on the specified number of processors which, as you can see,
can only be multiples of four. It would also be an increase in
performance if asynchronous communication will be used for
the data transfer to save for the waiting time (MPI Isend and
MPI Irecv).

ACKNOWLEDGMENT

Many thanks to the Advanced Science and Technology
Institute (ASTI) High-Performance Computing (HPC) Facility
and Philippine e-Science Grid (PSciGrid) for providing the
cluster environment that was used in this study.

REFERENCES

[1] J. A. C. Hermocilla and J. P. Pabico. (2003) Flowviz. [Online].
Available: http://flowviz.googlecode.com/

[2] E. X. T. Cheng, Ed., Changes of flood control situation and adjustments
of flood management strategies in China. Proceedings of the 2nd
International Symposium on Flood Defence, Wu et al. (eds). Beijing,
China: Science Press New York Ltd., 2002.

[3] K. Beven, “Rainfall-runoff modelling the primer.” 2001.
[4] E. Z. J. Marsalek, E. W. Watt, and E. F. Sieker, Eds., Flood issues

in contemporary water management. Malenovice, Czech Republic:
Proceedings of a NATO Advanced Research Workshop on Coping with
Flash Floods: Lessons Learned from Recent Experience, may 1999.

[5] G. E. Blelloch and B. M. Maggs. (2009) Flowviz. Carnegie Mellon Uni-
versity. [Online]. Available: http://www.buyya.com/cluster/v2chap1.pdf

[6] L. M. E. Silva and R. Buyya. (1999) Parallel
programming models and paradigms. [Online]. Available:
http://www.buyya.com/cluster/v2chap1.pdf

[7] J. P. Pabico. (2006) Parallel implementation of the d8 flow routing
algorithm in a geographic information system. [Online]. Available:
http://www.getcited.org/mbrz/11120313

[8] B. R. G. Maga, “Parallel streamline delineation,,” 2007.
[9] R. Kiss, “Determination of drainage network on digital elevation models,

utilities and limitations,” Journal of Hungarian geomathematics.
[10] J. P. Wilson, “Terrain analysis tools for routing flow and calculating

upslope contributing areas,” 2002, presented at the Terrain Analysis for
Water Resources Applications Symposium.

[11] J. Seibert and B. L. McGlynn, “A new triangular multiple flow di-
rection algorithm for computing upslope areas from gridded digi-
tal elevation models, water resources,” 2007, res., 43, W04501, doi:
10.1029/2006WR005128.

[12] K. e. a. Asanovic, “The landscape of parallel computing research: A
view from berkeley.l,” 2006.


