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Abstract— Graphics Processing Units (GPUs) have been con-
ventionally used in the acceleration of 2D, 3D graphics and
video rendering. Because of its performance and capability, the
GPU has evolved into a highly parallel programmable processor
that specializes in memory bandwith utilization and intensive
computation. For operations involving graphics, GPUs offer a
lot of gigaflops of processing prowess.

The programmability and competency of GPU in the field
of general-purpose computing is exemplified through the imple-
mentation of image processing techniques using Compute Unified
Device Architecture (CUDA) which makes image processing be
implemented with a high-speed performance.

I. INTRODUCTION

Different fields of scientific study use images to extract and
emphasize significant data. An image is a function of two
variables, f(x,y), where x and y are spatial coordinates. The
value of f at a coordinate pair (z,y) is called the gray value
or intensity of the image at that point. Each pair of coordinates
(z,y) is called a pixel. Images can contain hundreds of
thousands of pixels. A digital image is created when the values
of f for z, y and its intensity are finite [1]. The digital
images may be modified, enhanced and processed for various
purposes and with different techniques. These techniques are
then implemented using some language and the data produced
are used for analysis.

The area of study which refers to processing digital images
using digital computers is known as digital image processing.
One of the most important application of image processing is
the enhancement of visual information. The implementation
of digital image processing techniques has been successful
through the use of computers. However, the computations
required for processing digital images involve intensive ge-
ometrical and mathematical calculations. In addition, it will
make the processor do these calculations for all of the pixels
in the image; thus, while computing for values, the processor
accesses the memory in a higher rate. It is an operation
wherein large matrices are involved, assuming that the image
is a two-dimensional array with each cell as a pixel.

The objectives of the field of improving visual perception,
including digital image processing, using computers have long
been achieved by man [1] through two-dimensional and three-
dimensional graphics rendering, simulations, displays and etc.
One of the most important tools that lead to the outstanding in-
novation in visual computing today is the graphics processing
unit (GPU).

GPUs were designed for single instruction execution within
multiple machines and for accessing multiple pixels in par-
allel to enhance the quality of computer graphics. Inspite of
limitations in executing a single instruction, advances in the
capability of GPUs has been already within our reach. As a
result, GPU has become a tool not only for graphics rendering,
giving rise to General Purpose GPU (GPGPU) computing [2].

A. Significance

During the early days of computers, computer graphics
became important for the representation of results written by
different kinds of programs. Even though the CPU can satisfy
thedemands of some programs using only its resources, some
programslook for highly accelerated 3D graphics pipeline [3].

In 2003, standard GPUs with 32 bit floating point numbers
and programmable Vertex and Fragment processors were intro-
duced in the market [3]. According to Owens et al., the modern
GPU is not only a powerfulgraphics engine but also a highly
parallel programmable processor featuring peak arithmetic and
memory bandwidth [4]. The GPU is a processing unit built to
accelerate the rendering of graphics in display and has played
an important role in the field of mainstream computing. The
original design of GPUs has long been developed into a more
powerful card that even non-graphics applications can use
it. The development of the graphics card continues, allowing
more powerful processors to be built. The CPU communicates
with the GPU through a graphics connector: PCI Express
or AGP slot in the motherboard. The connector becomes
responsible of transferring all commands and data from the
CPU to the GPU and has evolved alongside the GPU itself
for the pastyears. The original AGP slot, 32 bits wide, ran at
66 MHz, with a transfer rate of 264 MB/sec. As years go by,
transfer rate doubles each available bandwidth, from 2x to 8x.
In 2004, the PCI Express standard has reached a maximum
bandwidth of 4GB/sec, simultaneously available to and from
the GPU [5].

The current GPU can perform concurrent floating point
operationsby having hundreds of processors. These processors
have onchip memory of 128MB to 4GB which is accessed by
the GPU with a faster rate than the CPU accessing the system
memory (RAM). The GEForce 8 GPU architecture achieves
up to 70GB per second memory transfers when used in
some applications, relatively higher than the ordinary system
memory interface which resulted to 6.4GB per second.
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Component Bandwidth
GPU Memory Interface | 35 GB/sec
PCI Express Bus (x16) 8 GB/sec

CPU Memory Interface | 6.4 GB/sec

TABLE I
AVAILABLE MEMORY BANDWIDTH IN CPU AND GPU [5]

Given that there is a lot of internally available bandwidth
and the GPU can access the memory on its own and with
a substantially higher rate [6], algorithms that run on the
GPU can take advantage of this bandwidth to achieve superior
performance improvements.

The architecture of GPUs is specifically designed to per-
form intensive mathematical operations and highly parallel
computations: the requirements of being an effective graphics
rendering unit. The GEForce 6 GPU Series and higher has the
following components in their graphics pipeline [7]:

e GPU Front End

¢ Vertex Processors

o Primitive Assembly Unit

o Rasterization and Interpolation Unit

o Fragment Processors

o Raster and Frame Buffer Operations Unit

Only two of these components are programmable: the vertex
processors and the fragment processors.

The vertex processor allows a program to alter the vertices
in the object. The user specifies how the program transforms
each vertex. A vertex cache, which is useful for fetching
and computing, contains the vertex data. The vertices can
be produced with different types of objects: points, lines or
triangles. The primitive assembly unit accepts the vertices
fromthe vertex processor and decides what object to use.

The rasterization unit calculates which pixels are covered by
each primitive; the pixels blocked by objects with nearer depth
value are discarded. The pixels which were not discarded now
carries its depth and color information, moreover, fragments
are produced. Each pixel is mapped on texture wth a ratio
of 1:1. Like the vertices, texture data is stored in a cache to
minimizethe bandwidth requirements.

The texture and fragment processor applies the fragment
program in each fragment, independently with each other. The
two processors work on squares of four pixels or quads. They
performthe computations for the texture level of each quad,
one at a time. The fragment processors operate on hundreds
of quads at a time, with each processor operating on one
quad. Basically, one instruction is executed a lot of times,
hiding the latency of fetching texture data from the cache. The
fragments go through the pipelines many times. Computations
and memory access are done everytime.

The order in which each fragment is rasterized is the order
when the fragment leaves the fragment processor. Then the
data is written in the frame buffer, ready for rendering [5]. The
design of GPU provide more units devoted to data processing
rather than memory managing. These data processing units
in GPU allow parallelization, where only single instruction
is executedin all units. [8] With all the processors running
parallel portions of an application, acceleration is met. Based

on the nature and features of the GPU, it is one of the
most suitable device to use in accelerating the execution
ofalgorithms, such as image processing.

According to Marathe, the following characteristics of im-
age processing algorithms served as the motivation for its
parallelization [7]:

1) Image processing algorithms deal with large volumes of
data of a particular type

2) the algorithms demand computational power which can
be optimized through parallelization

3) they require realtime processing

On the other hand, GPU implements many graphics prim-
itive operations that satisfies the need for faster rendering
of graphics than CPUs. Specifically, GPUs are efficient in
performing the following operations:

1) Fast parallel floating point processing
2) single instruction multiple data operations
3) high computation per memory access

A very prominent operation in processing images is convo-
lution. It is defined as a mathematical operation involvingtwo
functions f and g, resulting in a third function. In image
processing, the convolution operation calculates the weighted
average of a pixel’s neighborhood [9], using a convolution
mask, which is a matrix of the weights of each neighboring
pixel. Each value in the neighborhood is multiplied with a
corresponding value in the convolution mask. These masks
may have varying dimensions and as it increases dimension,
performing convolutions become time-costly.

The most common dimension of convolution masks is 3x3
but there are many algorithms that use a 65x65 dimensional
mask. For instance, when performing a convolution in an
800x800 image, there are about 65x65x800x800 memory
operations, array lookups and arithmetic operations such as
multiplication and addition.

The characteristics of image processing algorithms and
GPU’s capability make them compatible in terms of im-
plementation. Therefore, GPU can respond to our need for
parallelization, which is deemed as the future of computing.
Due to this fact, computer scientists have utilized GPU in
making faster algorithms for processing images. There are
many publications and researches that involve the GPU in
image processing. They have successfully implemented image
processing operations through the programmable pipeline of
GPU and its fragment and vector pipelines.

To help programmers in writing algorithms for the GPU, a
new tool has been developed by NVIDIA: Compute Unified
Device Architecure or CUDA. The design of CUDA ables
programmers to use the graphics unit to perform operations
that are usually done by CPU.

Image processing techniques involve applying the same
mathematical operation in all the pixels of the image. With
thischaracteristic of image processing, CUDA can offer im-
mense difference in the rate of performing these operations by
runningthe code on each concurrently executing threads and
produce the same output. The GPU’s texture memory available
for use by CUDA can be used to store the image for faster
pixel value fetching.
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CUDA is a scalable programming model for software envi-
ronment and parallel computing. The technology is available
for a large amount of money but performance rate achieved
could be up to 500 GFLOPS (floating point operation per
second).

B. Objectives

This study aims to make the algorithms of image processing
yield faster output without compromise to the quality of the
resulting image. The techniquesthat will be implemented in the
study are thresholding, gamma correction, image brightening,
smoothing, edge detection, dilation and erosion. Specifically,
this study aims:

1) To parallelize the selected image processing techniques

using CUDA

2) To render the output image of GPU and CPU implemen-

tation and

3) To measure the running time of each process for com-

parison

II. REVIEW OF RELATED LITERATURE
A. GPU as Tool for Acceleration of Algorithms

The people behind SINTEF ICT, an independent research
group, used the GPU, with 32 bit floating point arithmetic and
programmable vertex and fragment shaders, as an important
computational resource within Computer Aided Graphics De-
sign (CAGD) and Partial Differential Equation (PDE) based
simulations. Results in solving partial differential equations
show a speedupby a factor between 10 and 20 in comparison
with a Pentium 2.8 GHz CPU. According to the project, the
speedup is best achieved when shaders perform many floating
point instructions rather than with a few instructions [3]. The
project used GPU for a non-graphics application and achieved
a considerably high increase in performance.

In molecular biology, researchers use supercomputers to be
able to satisfy the system requirements of their study. The
presentation of Schulten at the GPU Technology Conference
showed how powerful GPU is in terms of simulating virus
infections, molecular dynamics and E.coli bacteria activity
and other researches such as light energy consumption of na-
ture, protein synthesis, radial distribution functions, quantum
chemistry visualization and protein folding [10]. These kind
of scientific researches require producing fast response, e.g.
investigation of drug resistance of the swine flu virus. Results
show that GPU’s capability merely equals the result of the
simulations done with supercomputers.

Last April 2011, Lactuan presented his research in the
Institute of Computer Science, University of the Philippines
Los Bafios. He implemented the simulation of the growth of
cancer cells using CUDA. According to his research, each cell
can grow, stay the same or die, independently with each other
and the probabilities of one cell and what will happen to it
after an amount of time was computed. The use of CUDA
in the simulation is efficient but when the matrix has been
increased, GPU has been outperformed by CPU. The author
mentioned that the CUDA code can still be improved [11]to
attain better results.

B. Parallelization of Image Processing

In 1999, Hopf released a publication that discussed image
processing with GPUs, being the first of its kind. He mentioned
in his research that image processing techniques such as
filtering and feature extraction like edge detection have some
complexities. For that, there are no other way to make the
process interactive enough for the users’ visual perception.
Therefore, he proposed that graphical units be used to avoid
slowness when implementing the visual transformation cycles
[12]. Hopf used wavelet transformation using Fast Fourier
Transformation (FFT) in manipulating images. This study
did not adopt the FFT approach, however, some filtering
techniques and edge detection were implemented.

Colantoni, programmed the GPU to process color images.
He used the capability of current graphics cards, the pro-
grammability features, in the analysis and processing of color
images. He implemented five algorithms: local mean filtering,
RGB to Lab and RGB to HSV color spaces conversions,
local principal component analysis and anisotropic diffusion
filtering. NVIDIA NV30 graphics card have been used in the
research and the implementation of the algorithms in GPU
yield faster output than CPU [13]. The algorithm that will be
adopted from his research is local mean filtering.

In 2007, Narain used GPU in the application of color cor-
rection, convolution, wavelet transforms, anistropic diffusion,
depth of field, HDR and tone mapping. In convolution, a
technique that will also be used in this study, Narain created
a kernel for theconvolution mask and passed each coordinate
(z,y) as data arrays. The convolution function is computed
using the formula g[z,y] = Sf[x + i,y + j] = h[i, j]. This
operation normally requires NxN texture lookups, where N is
the dimension of the image. The paper proposed a method that
limits the number of texture lookups. Using cache coherence,
texture lookups are fast and for this, the texture memory
readily available through CUDA was used in this study.
The results of Narain’s research show that GPU outstands
the performance of CPU in all cases. The different filtering
techniques implemented in this study used the convolution
concept discussed in Narain’s [14].

Trajano implemented different image processing routines
for execution in single and distributed processors. He men-
tioned that the time consumed by the application of the tech-
niques are considered in the process, thus, using distributed
systems instead of a single processor in manipulating images
[15]. The routines that he implemented consists of thresh-
olding, brightness and contrast adjusting, inverting, gamma,
smoothing, detecting edges, eroding and dilating. This study
will implement all of the techniques for comparison. His study
parallelized the image processing techniques using distributed
systems called nodes while this study will implement the
parallelization using multiple concurrent threads.

C. Image Processing Parallelization Using GPUs

Payne et al. has studied the advantage of GPU over CPU
in image processing tasks that require convolving the image
with a mask [16] and as a result of the study, straight-forward
2D convolutions demonstrated a ratio of 130:lin terms of
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computation time between the GPU and CPU, respectively.
Averagely, their tests attained a speed-up of 59:1.

Castafio-Diez et al. presented three different implementa-
tions of SART, two of them using CUDA, and one with a
texture-based approach using Cg [17]. All the implementa-
tions achieved approximately 50 times speedup, compared to
their CPU equivalents. The Cg implementation performed the
best, however, writing and debugging it required consider-
ably higher effort than in CUDA, as noted by the authors.
The GPU-accelerated weighted back projection, used for 3D
reconstruction from 2D electron micrographs was tested, as
well. This included low-pass filtering of the acquired images,
rotation, Fourier space weighting, and backprojection into a
3D image. They attained speedups of up to 10 times on
graphics hardware.

The OpenVIDIA project explores the notion of using com-
puter graphics hardware in reverse to accelerate the computer
vision task of image analysis even though graphics hardware
was initially designed for rendering images, or image syn-
thesis. Furthermore, OpenVIDIA explores a parallel graphics
for vision” architecture created by placing multiple computer
graphics cardson a single motherboard. This creates a low cost,
commodity, architecture for hardware accelerated computer
vision and signal processing. The GPU has been applied to
other calculations beyond graphics [6].

Due to the high performance rate achieved by using the
GPU, particularly through CUDA, this study will be able to
test the computing capabilities of the GPU and how CUDA
can utilize these capabilities.

III. METHODOLOGY

The study was conducted using an ASUS K43S machine
with an Intel Core i3 processor with the following specifica-
tions:

e Clock Rate: 2.2GHz
« 2GB RAM
¢ 640GB HDD

The graphics card that will be used is the NVIDIA GeForce
GT520M. The specifications of the graphics card are given
below:

¢ Global Memory - 1GB

¢ 48 Multiprocessors

o Maximum threads per block: 1024
o Clock Rate: 1.48GHz

A. System Requirements

In desktop machines, the driver for the graphics device must
be installed. It can be downloaded from NVIDIA’s website. As
for this study, the device driver were pre-installed because the
driver differs from manufacturer to manufacturer. To complete
the study, the following were installed:

o NVIDIA Computing SDK 3.2 (OpenGL and GLUT in-
cluded)

o CUDA 3.2 Toolkit

o Microsoft Visual C++ 2008 Express Edition

o SDL Image

o GLUI

Compiling CUDA programs were difficult when done using
NVCC, the CUDA compiler. Visual C++ 2008 was installed,
to avoid problems in compiling and to handle the linking
and executing of the project, and other stuffs related to the
programming environment. OpenGL is a cross-platform Ap-
plication Programming Interface (API) developed by Silicon
Graphics, for writing application that produce 2D and 3D
graphics. It is directly operable with CUDA, so rendering
of the CUDA kernel’s output is easier with OpenGL. GLUT
is an OpenGL utility toolkit used for developing a simple
windowing application. This makes the rendering of the output
visible on screen, in a simple window. The SDL Image library
is an extension of SDL library which is written in C++
and is widely used for game development. It offers a lot
of image processing functions like loading and manipulating
images. This library was used in loading the image data for
CUDA. GLUI library is the Ul-building utility developed by
the makers of GLUT, to add more useful interface in the GLUT
window such asbuttons, panels, text boxes, spinners and etc.

B. Image Processing Techniques

The image processing routines implemented in the study
were based from the study conducted by Trajano [15] in 2010.

1) Thresholding: A technique used for detecting object
pixels in an image. The decision rule for marking object pixel
is that its value should be greater than a particular value or
threshold. Otherwise, it will be marked as a background pixel.
The background pixels are white while the object is black after
the application of the technique.

2) Brightness Adjustment: The brightness of an imagecan
be changed using the formula f(i) = i(1 — p) + p where i is
the intensity value of a pixel, p is the brightening parameter
and f(7) is the new value of the pixel [18].

3) Invert: Inverting the image will result to an image where
the pixels that are originally bright will become dark and vice
versa. The formula for inverting an image is computed as
f(i) = 1 — ¢ where i is the intensity value of a pixel and
f (@) is the new value of the pixel [18].

4) Gamma Correction: Gamma Correction routine modi-
fies the contrast of an image. The contrast can be modified
using the formula f(¢) = P where ¢ is the intensity value of a
pixel, p is the contrasting parameter and f(¢) is the new value
of the pixel [18]. The value of p ranges from O to 5.

5) Smoothing: Smoothing an image comprises the appli-
cation of convolution using a smoothing filter. The technique
that will be used for smoothing the image is mean filtering.

6) Edge Detection: The technique that will be used is
the Sobel edge detection algorithm which uses the Sobel
horizontal and vertical filter.

7) Dilation: In dilating gray images, the value of the output
pixel is the maximum value of all the pixels in the input pixel’s
neighborhood. In a binary image, if any of the pixels is set to
the value 1, the output pixel is set to 1. [9]

8) Erosion: In eroding gray images, the value of theoutput
pixel is the minimum value of all the pixels in the inputpixel’s
neighborhood. In a binary image, if any of the pixels isset to
0, the output pixel is set to 0 [9].
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9) Sharpening: Images are sharpened to enhance the fea-
tures such as lines and colors. To obtain this enhancements, a
difference operator filter must be used. A high pass filter will
be used to sharpen the image.

C. Parallelization of the Image Processing Techniques

Parallel programming is exhausted by the GPU as it has
multiple processors to execute the commands concurrently.
The architecture of the GPU, an abstract design of a modern
GPU, is shown in Figure 1. The green boxes correspond
to a processor which performs arithmetic operations. Each
processor has direct access to the on-chip memory, the or-
ange boxes at the left. CUDA utilizes the capability of the
GPU through the different key parallel abstractions it offers:
zillions of lightweight threads, hierarchy of concurrent threads,
lightweight synchronization primitives and shared memory
model for cooperating threads [19].

GPU

Fig. 1. The GPU Architecture [8].

When programmed through CUDA, the GPU can be seen as
a compute device which can execute a high number of threads
in parallel. It operates as a co-processor to the CPU, the host
device [8]. With this, there are two types of codes in a CUDA
program: a host code and kernel code. Figure 2 shows the
graphical illustration of the flow of commands and where it
will be executed.

Multiple threads can be processed simultaneously because
of the hundreds of processors that perform the operation. The
kernel code launches the threads thatwill execute the image
processing codes. The threads executed on the GPU form a 1D,
2-D, or 3-D structure, called a block. The blocks are arranged
in 1D or 2-D layout, called a grid. The structure that will be
used in this study is two-dimensional, to be compatible with
the layout of an image.

Each thread can be exclusively defined by its coordinates
within a block, and by coordinates of its block within a grid.
Thus, each block in the grid has a unique ID and each thread
in the block has their unique thread ID [20], similar to how a
cell in an array is accessed. This type of execution consists of
successive kernel execution in the device as Figure 3 shows,
allowing more room for data processing.

Each block of threads is executed by a single multiprocessor,
on a single shared memory, so all threads of a single block

Execute parallel
in each core

Fig. 2. The processing flow of CUDA programs.

can share. The number of blocks that each multiprocessor
can process depends on how many registers per thread and
how much shared memory per block were required by the
kernel. The multiprocessor§ registers and shared memory are
split among all the threads of the batch of blocks [8].

D. Implementation in CUDA

The image processing kernels implemented in CUDA was
launched using a grid of thread blocks with the dimension
imageW/blockwidth x imageH/blockHeight with blockWidth
x blockWidth threads each. BlockWidth is a constant with
value 8, meaning there will be 8x8 threads executed in each
block. For better illustration, suppose the image width and
height is 160. The grid of blocks will be of size 20x20 and
each block will have to execute 64 threads. The number of
threads will add up to the total number of pixels in the image.

If the threads allocated is less than the number of pixels in
the image, there will be parts of the image that will not be
processed. The number of threads and the dimension of the
grid of blocks is the most essential part of the kernel launch.

Parallelization is achieved by implementing the same oper-
ation in all the pixels, with one thread accessing each pixel,
computing the values concurrently. Each lightweight thread
has a unique thread ID, similar to the index of each cellin
a 2D array, so consistency of data is ensured. In CUDA, we
need not loop around the image from its width to height, as the
threads running perform operations in a per-pixel manner. The
threads accessing each pixel in every kernel launch parallelized
the image processing techniques as each thread concurrently
executes the operation to all the pixels.

Thread execution do not finish at the same time, so syn-
chronization is important. The synchronization primitive in
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Fig. 3. A diagram showing the grid of thread blocks, the thread blocks and
the threads in each block. [8].

CUDA can be called after the threads have been executed, for
accurate results. The processing techniques were implemented
in CUDA using texture memory, device memory and global
memory. The most utilized of these is the texture as it
contributed to the speedup of the processing kernels. Texture
fetching is relatively faster than looking up global memory
because of the cache. The image result is mapped onto the
texture memory, and is then accessible to each thread, without
the hassle of passing the 2D array containing the image data
in every kernel launch.

E. Rendering the output using OpenGL

An OpenGL texture and buffer is created at the very
beginning of the program because the buffer is where the data
is fetched in order to get it rendered on screen. After creating
the texture, parameters are set, and the image data is copied
to the texture.The texture is created and image data is copied
into texture using the functions, respectively:

glGenTextures (1,
glTexImage2D (...,

&texturelD) ;
source_image) ;

OpenGL buffers are then created and initialized using the
following functions:

glGenBuffers(l, &BufferID);
glBufferData (..., source_image,...);

The output image data from CUDA is then stored in an
OpenGL frame buffer by registering the OpenGL buffer with
CUDA’s resource, to be able to use the CUDA’s resource when
OpenGL renders the output image.

GLUT is responsible for executing the main thread. It
handles such events by specifying which function it’ll call

once a key has been pressed or if a button is pressed. It has
an idle and reshape routines that handles what to do when
the user doesn’t do anything on the window and what will
happen to the rendered output when the window is reshaped,
respectively. The most important function in the GLUT toolkit
is its display function, as it handles what will be rendered on
the window. The calling of the CUDA kernels are inside the
display GLUT function as it is where data is rendered real-
time.

These are the GLUT functions that was implemented in the
project:

o Idle - for handling what the window will display when

the program is idle

o Reshape - for reshaping the window

o Display - for rendering the data

o Control Callback - for handling action events

FE. User Interface

The main application interface consists of two subwindows:
the controls and the rendering window.

1) Controls Window: This window consists of four panels,
as shown in figure 4. The first one is where the user can browse
an image to be loaded by the application. The second panel
is composed of image enhancement options: brightness and
contrast adjustment, threshold and iteration value and mask
and box radius adjustment. The options are dependent on the
selected image processing technique, some options will be
disabled if not applicable with the selected technique. The
third panel contains the image processing technique that will
be performed by the selected processor, that will in turn be
displayed on the rendering window. The last panel is where
the user can select which processor will execute the processing
techniques and where the user can see the time of execution
of each.

2) Rendering Window: This is where the user can see the
output of the processing techniques. The images rendered were
scaled to fit the screen of the machine, but the aspect ratio
is maintained so the image’s visual appearance will not be
affected.

Fig. 4. The main application window, the left panel consists of the controls
and the other is the rendering screen.

G. Performance Evaluation

The running time of the CPU functions were calculated
using the commands:
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Fig. 5. One of the test images with dimension 5800 x 4350

float runtime;
clock_t start,
assert ((start =

stop;
clock ())!=-1);

//image processing code here

stop = clock(); runtime = (float)
(stop-start) /CLOCKS_PER_SEC;

On the other hand, CUDA kernels’ execution time is mea-
sured using the commands:

unsigned int timer;
float runtime;
cutCreateTimer (&timer) ;
cutStartTimer (timer) ;

//image processing code here

cutStopTimer (timer) ;
runtime = cutGetTimerValue (timer)/1000;

Each processing technique kernel or function returns the
running time, in seconds, measured using the above implemen-
tation, with data type float. The performance of each processor
in executing the stated processing techniques will be measured
using a simple benchmark that executes the techniques for a
given number of cycles or iterations. The running time of each
process is accumulated and the average is computed.

IV. RESULTS AND DISCUSSION

The study involved creating a new function to load different
image formats. SDL Image was the library used to load image
data from disk. The image formats tested in the application
were png, jpeg and bmp. There is a limitation in the size of
image to be used. Images of dimension 6000 or higher cannot
be handled by the application, SDL Image library returns false
when allocating memory for the image. The test images used
were of dimension 1280 x 800, 2500 x 1663 and 5800 x 4350.

The test image used, as shown in Figure 8, is selected
because of the certain features in the image that can be
extracted or enhanced where the results will be easier to see.
Such features where the edges, the exposure and the colors.

CUDA’s syntax made the implementation easier because of
the familiarity with the C and C++ language. The selected

Fig. 7.

Output image after applying invert

image processing routines were successfully parallelized using
CUDA through the successive thread execution after launching
the kernel. Each thread was executed concurrently in multi-
ple processors. Consistency of the data was achieved using
CUDA’s synchronization routine.

The results of the parallelized and sequential routines
showed minimal output differences but the parallel execution
of the algorithms showed faster execution time. All the pro-
cessing techniques have been executed and rendered a lot of
times faster using the GPU. Figure 5 shows the comparison
of the running time for each using different images and
they have showed equivalent results. The GPU didn’t took a
second to execute each of the techniques, except the smoothing
algorithm using the largest test image.

The execution time of the CPU functions was also reflected
in rendering the output images. When rendering results from
the CPU, the application takes approximately 30 seconds to

Fig. 8. Output image after applying edge detection
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Performance Evaluation using the 1280 by 800 image
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Fig. 9. The running time of the processing routines for test image 1.

Performance Evaluation using the 2500 by 1663 image
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Fig. 10. The running time of the processing routines for test image 2.

respond using the largest test image, with dimension 5800
by 4350. The convolution-based image processing techniques
such as sobel edge detection, erosion and dilation require
each processor to access multiple memory locations each
iteration. The result of implementing these convolution-based
techniques in the GPU yield an execution time of less than a
second.

The GPU outperformed the CPU of the machine used in
the study by executing the image processing routines more
than a hundred times faster in some algorithms. Figure 12
shows the ratio between the running time of each implemented
techniques using all the test images.

V. CONCLUSION

The algorithm for each technique need not be different
from the CUDA code to be parallelized. Instead, CUDA’s
architecture allows parallelization through SIMT execution,
textures, shared memory and successive kernel execution. The
hundreds of processors performing arithmetic operations in
the GPU and CUDA’s capability of launching thousands of
independent threads has helped achieve parallelization.

Similar result was reflected in Trajano’s study of par-
allelizing image processing techniques through distributing
the tasks to different nodes. His study showed faster results
during the parallelization [15]. Therefore, the parallelization of
image processing techniques showed greater speed compared
to sequentially executed operations.

The running time of the GPU kernels are relative to the size
of the image used. The larger the size of the image, the slower
the running time in the GPU but the values are relatively near.

Performance Evaluation using the 5800 by 4350 image
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Fig. 11.  The running time of the processing routines for test image 3.

Ratio of CPU to GPU Performance
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Fig. 12. Ratio of the running time of CPU and GPU-based image processing.

This is an effect of parallelization, given that the image size
hardly affected the results.

Floating-point operations and memory location fetching
are accelerated using CUDA, and the GPU, based on the
results of the gamma correction technique and the convolution-
based techniques. In addition, all the processes, ranging from
copying the image to convolution, the GPU has outperformed
the CPU with more than a hundred times faster execution time.

Each output image is rendered real-time by the use of
OpenGL and CUDA. OpenGL renders the image faster when
the data is coming from the CPU. Developers has created
functions for CUDA-OpenGL inter-operability, so the use of
the two in this study really created an advantage in terms of
the rendering of output. With this, results of CUDA kernels
are best rendered using OpenGL.

Image processing techniques implemented in CUDA ex-
hausts the GPU for general purpose programming. Using
CUDA, the GPU’s capability for accelerating processes, even
without the knowledge of how the GPU graphics pipeline, has
been made possible. This could open doors for programmers to
develop more powerful softwares and simulations with greater
performance.

One important factor to consider in assessing the speed
of the implementation is the percentage that the processor
allocate its service for such applications. Only 25 percent of
the CPU was used by the application, as shown by the task
manager application in Windows 7. With this, the study can’t
fully assess the capability of the CPU when handling compute-
intensive operations such as image processing.
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