
Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 1

Crypto Lab – Secret-Key Encryption

Copyright © 2006 - 2016 Wenliang Du, Syracuse University.
The development of this document was partially funded by the National Science Foundation under Award
No. 1303306 and 1318814. This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. A human-readable summary of (and not a substitute for) the license is
the following: You are free to copy and redistribute the material in any medium or format. You must give
appropriate credit. If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original. You may not use the material for commercial purposes.

1 Overview

The learning objective of this lab is for students to get familiar with the concepts in the secret-key encryption.
After finishing the lab, students should be able to gain a first-hand experience on encryption algorithms,
encryption modes, paddings, and initial vector (IV). Moreover, students will be able to use tools and write
programs to encrypt/decrypt messages.

2 Lab Environment

Installing OpenSSL. In this lab, we will use openssl commands and libraries. We have already in-
stalled openssl binaries in our VM. It should be noted that if you want to use openssl libraries in
your programs, you need to install several other things for the programming environment, including the
header files, libraries, manuals, etc. We have already downloaded the necessary files under the directory
/home/seed/openssl-1.0.1. To configure and install openssl libraries, go to the openssl-1.0.1
folder and run the following commands.

You should read the INSTALL file first:

$sudo ./config
$sudo make
$sudo make test
$sudo make install

Installing a hex editor. In this lab, we need to be able to view and modify files of binary format. We have
installed in our VM a hex editor called GHex. It allows the user to load data from any file, view and edit it
in either hex or ascii. Note: many people told us that another hex editor, called Bless, is better; this tool
may not be installed in the VM version that you are using, but you can install it yourself using the following
command:

$sudo apt-get install bless

3 Lab Tasks

3.1 Task 1: Encryption using different ciphers and modes

In this task, we will play with various encryption algorithms and modes. You can use the following
openssl enc command to encrypt/decrypt a file. To see the manuals, you can type man openssl

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 2

and man enc.

$openssl enc ciphertype -e -in plain.txt -out cipher.bin \
-K 00112233445566778889aabbccddeeff \
-iv 0102030405060708

Please replace the ciphertypewith a specific cipher type, such as -aes-128-cbc, -aes-128-cfb,
-bf-cbc, etc. In this task, you should try at least 3 different ciphers and three different modes. You can
find the meaning of the command-line options and all the supported cipher types by typing "man enc".
We include some common options for the openssl enc command in the following:

-in <file> input file
-out <file> output file
-e encrypt
-d decrypt
-K/-iv key/iv in hex is the next argument
-[pP] print the iv/key (then exit if -P)

3.2 Task 2: Encryption Mode – ECB vs. CBC

The file pic original.bmp contains a simple picture. We would like to encrypt this picture, so people
without the encryption keys cannot know what is in the picture. Please encrypt the file using the ECB
(Electronic Code Book) and CBC (Cipher Block Chaining) modes, and then do the following:

1. Let us treat the encrypted picture as a picture, and use a picture viewing software to display it. How-
ever, For the .bmp file, the first 54 bytes contain the header information about the picture, we have
to set it correctly, so the encrypted file can be treated as a legitimate .bmp file. We will replace the
header of the encrypted picture with that of the original picture. You can use a hex editor tool (e.g.
ghex or Bless) to directly modify binary files. Do this by opening the original file then copying the
first 54 bytes. Paste these on the encrypted file.

2. Display the encrypted picture using any picture viewing software. Can you derive any useful infor-
mation about the original picture from the encrypted picture? Please explain your observations.

3.3 Task 3: Encryption Mode – Corrupted Cipher Text

To understand the properties of various encryption modes, we would like to do the following exercise:

1. Create a text file that is at least 64 bytes long.

2. Encrypt the file using the AES-128 cipher.

3. Unfortunately, a single bit of the 30th byte in the encrypted file got corrupted. You can achieve this
corruption using a hex editor.

4. Decrypt the corrupted file (encrypted) using the correct key and IV.

Please answer the following questions: (1) How much information can you recover by decrypting the
corrupted file, if the encryption mode is ECB, CBC, CFB, or OFB, respectively? Please answer this question
before you conduct this task, and then find out whether your answer is correct or wrong after you finish this
task. (2) Please explain why. (3) What are the implication of these differences?

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 3

3.4 Task 4 : Padding

For block ciphers, when the size of the plaintext is not the multiple of the block size, padding may be
required. In this task, we will study the padding schemes. Please do the following exercises:

1. The openssl manual says that openssl uses PKCS5 standard for its padding. Please design an
experiment to verify this. In particular, use your experiment to figure out the paddings in the AES
encryption when the length of the plaintext is 20 octets and 32 octets.

2. Please use ECB, CBC, CFB, and OFB modes to encrypt a file (you can pick any cipher). Please
report which modes have paddings and which ones do not. For those that do not need paddings,
please explain why.

3.5 Task 5: Programming using the Crypto Library

So far, we have learned how to use the tools provided by openssl to encrypt and decrypt messages. In
this task, we will learn how to use openssl’s crypto library to encrypt/descrypt messages in programs.

OpenSSL provides an API called EVP, which is a high-level interface to cryptographic functions. Al-
though OpenSSL also has direct interfaces for each individual encryption algorithm, the EVP library pro-
vides a common interface for various encryption algorithms. To ask EVP to use a specific algorithm, we
simply need to pass our choice to the EVP interface. A sample code is given in http://www.openssl.
org/docs/crypto/EVP_EncryptInit.html. Please get yourself familiar with this program, and
then do the following exercise.

You are given a plaintext and a ciphertext, and you know that aes-128-cbc is used to generate the
ciphertext from the plaintext, and you also know that the numbers in the IV are all zeros (not the ASCII
character ‘0’). Another clue that you have learned is that the key used to encrypt this plaintext is an English
word shorter than 16 characters; the word that can be found from a typical English dictionary. Since the
word has less than 16 characters (i.e. 128 bits), space characters (hexadecimal value 0x20) are appended to
the end of the word to form a key of 128 bits. Your goal is to write a program to find out this key. You can
download a English word list from the Internet. We have also linked one on the web page of this lab. The
plaintext and ciphertext is in the following:

Plaintext (total 21 characters): This is a top secret.
Ciphertext (in hex format): 8d20e5056a8d24d0462ce74e4904c1b5

13e10d1df4a2ef2ad4540fae1ca0aaf9

Note 1: If you choose to store the plaintex message in a file, and feed the file to your program, you need
to check whether the file length is 21. Some editors may add a special character to the end of the file. If that
happens, you can use a hex editor tool to remove the special character.

Note 2: In this task, you are supposed to write your own program to invoke the crypto library. No credit
will be given if you simply use the openssl commands to do this task.

Note 3: To compile your code, you may need to include the header files in openssl, and link to
openssl libraries. To do that, you need to tell your compiler where those files are. In your Makefile,
you may want to specify the following:

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 4

INC=/usr/local/ssl/include/
LIB=/usr/local/ssl/lib/

all:
gcc -I$(INC) -L$(LIB) -o enc yourcode.c -lcrypto -ldl

3.6 Task 6: Pseudo Random Number Generation

Generating random numbers is a quite common task in security software. In many cases, encryption keys
are not provided by users, but are instead generated inside the software. Their randomness is extremely
important; otherwise, attackers can predict the encryption key, and thus defeat the purpose of encryption.
Many developers know how to generate random numbers (e.g. for Monte Carlo simulation) from their
prior experiences, so they use the similar methods to generate the random numbers for security purpose.
Unfortunately, a sequence of random numbers may be good for Monte Carlo simulation, but they may be
bad for encryption keys. Developers need to know how to generate secure random numbers, or they will
make mistakes. Similar mistakes have been made in some well-known products, including Netscape and
Kerberos.

In this task, students will learn a standard way to generate pseudo random numbers that are good for
security purposes.

Task 6.A: Measure the Entropy of Kernel

To generate good pseudo random numbers, we need to start with something that is random; otherwise, the
outcome will be quite predictable. Software (i.e. in the virtual world) is not good at creating randomness, so
most systems resort to the physical world to gain the randomness. Linux gains the randomness from the
following physical resources:

void add_keyboard_randomness(unsigned char scancode);
void add_mouse_randomness(__u32 mouse_data);
void add_interrupt_randomness(int irq);
void add_blkdev_randomness(int major);

The first two are quite straightforward to understand: the first one uses inter-keypress timing and scan-
code, and the second one uses mouse movement and interrupt timing. The third one gathers random numbers
using the interrupt timing. Of course, not all interrupts are good sources of randomness. For example, the
timer interrupt is not a good choice, because it is predictable. However, disk interrupts are a better measure.
The last one measures the finishing time of block device requests.

The randomness is measured using entropy, which is different from the meaning of entropy in the infor-
mation theory. Here, it simply means how many bits of random numbers the system currently has. You can
find out how much entropy the kernel has at the current moment using the following command.

$cat /proc/sys/kernel/random/entropy_avail

Please move and click your mouses, type somethings, and run the program again. Please describe your
observation in your report.

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 5

Task 6.B: Get Pseudo Random Numbers from /dev/random

Linux stores the random data collected from the physical resources into a random pool, and then uses two
devices to turn the randomness into pseudo random numbers. These two devices have different behaviors.
In this subtask, we study the /dev/random device.

You can use the following command to get 16 bytes of pseudo random numbers from /dev/random.
We pipe the data to hexdump to print them out.

$head -c 16 /dev/random | hexdump

Please run the above command several times, and you will find out that at some point, the program
will not print out anything, and instead, it will be waiting. Basically, every time a random number is
given out by /dev/random, the entropy of the randomness pool will be decreased. When the entropy
reaches zero, /dev/random will block, until it gains enough randomness. Please show us how you can
get /dev/random to unblock and to print out random data.

Task 6.C: Get Random Numbers from /dev/urandom

Linux provides another way to access the random pool via the /dev/urandom device, except that this
device will not block, even if the entropy of the pool runs low.

You can use the following command to get 1600 bytes of pseudo random numbers from /dev/urandom.
You should run it several times, and report whether it will block or not.

$head -c 1600 /dev/urandom | hexdump

Both /dev/random and /dev/urandom use the random data from the pool to generate pseudo
random numbers. When the entropy is not sufficient, /dev/random will pause, while /dev/urandom
will keep generating new numbers. Think of the data in the pool as the “seed”, and as we know, you can use a
seed to generate as many pseudo random numbers as you want. Theoretically speaking, the /dev/random
device is more secure, but in practice, there is not much difference, because the “seed” is random and non-
predictable. /dev/urandom does re-seed whenever new random data become available. The fact that
/dev/random blocks may lead to denial of service attacks.

It is recommended that you use /dev/urandom to get random numbers. To do that in your program,
you just need to read directly from this file. The following code snippet shows you how.

#define LEN 16 // 128 bits

unsigned char *key = (unsigned char *) malloc(sizeof(unsigned char)*LEN);
FILE* random = fopen("/dev/urandom", "r");
fread(key, sizeof(unsigned char)*LEN, 1, random);
fclose(random);

4 Submission

You need to submit a detailed lab report to describe what you have done and what you have observed; you
also need to provide explanation to the observations that are interesting or surprising. In your report, you
need to answer all the questions listed in this lab.

