
Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 1

Environment Variable and Set-UID Program Lab

Copyright © 2006 - 2016 Wenliang Du, Syracuse University.
The development of this document was partially funded by the National Science Foundation under Award
No. 1303306 and 1318814. This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. A human-readable summary of (and not a substitute for) the license is
the following: You are free to copy and redistribute the material in any medium or format. You must give
appropriate credit. If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original. You may not use the material for commercial purposes.

1 Overview

The learning objective of this lab is for students to understand how environment variables affect program
and system behaviors. Environment variables are a set of dynamic named values that can affect the way
running processes will behave on a computer. They are used by most operating systems, since they were
introduced to Unix in 1979. Although environment variables affect program behaviors, how they achieve
that is not well understood by many programmers. As results, if a program uses environment variables, but
the programmer do not know that they are used, the program may have vulnerabilities. In this lab, students
will understand how environment variables work, how they are propogated from parent process to child,
and how they affect system/program bahivors. We are particularly interested in how environment variables
affect the behavior of Set-UID programs, which are usually privileged programs.

2 Lab Tasks

2.1 Task 1: Manipulating environment variables

In this task, we study the commands that can be used to set and unset environment variables. We are using
Bash in the seed account. The default shell that a user uses is set in the /etc/passwd file (the last field
of each entry). You can change this to another shell program using the command chsh (please do not do it
for this lab). Please do the following tasks:

• Use printenv or env command to print out the environment variables. If you are interested in
some particular environment variables, such as PWD, you can use "printenv PWD" or "env |
grep PWD".

• Use export and unset to set or unset environment variables. It should be noted that these two
commands are not seperate programs; they are two of the Bash’s internal commands (you will not be
able to find them outside of Bash).

2.2 Task 2: Inheriting environment variables from parents

In this task, we study how environment variables are inherited by child processes from their parents. In
Unix, fork() creates a new process by duplicating the calling process. The new process, referred to as the
child, is an exact duplicate of the calling process, referred to as the parent; however, several things are not
inherited by the child (please see the manual of fork() by typing the following command: man fork).
In this task, we would like to know whether the parent’s environment variables are inherited by the child
process or not.

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 2

Step 1. Please compile and run the following program, and describe your observation. Because the output
contains many strings, you should save the output into a file, such as using a.out > child (assuming
that a.out is your executable file name).

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

extern char **environ;

void printenv()
{
int i = 0;
while (environ[i] != NULL) {

printf("%s\n", environ[i]);
i++;

}
}

void main()
{
pid_t childPid;

switch(childPid = fork()) {
case 0: /* child process */

printenv();
exit(0);

default: /* parent process */
//printenv();
exit(0);

}
}

Step 2. Now comment out the printenv() statement in the child process case, and uncomment the
printenv() statement in the parent process case. Compile and run the code, and describe your observa-
tion. Save the output in another file.

Step 3. Compare the difference of these two files using the diff command. Please draw your conclusion.

2.3 Task 3: Environment variables and execve()

In this task, we study how environment variables are affected when a new program is executed via execve().
The function execve() calls a system call to load a new command and execute it; this function never re-
turns. No new process is created; instead, the calling process’s text, data, bss, and stack are overwritten by
that of the program loaded. Essentially, execve() runs the new program inside the calling process. We
are interested in what happens to the environment variables; are they automatically inherited by the new
program?

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 3

Step 1. Please compile and run the following program, and describe your observation. This program
simply execute a program called /usr/bin/env, which prints out the environment variables of the current
process.

#include <stdio.h>
#include <stdlib.h>

extern char **environ;

int main()
{
char *argv[2];

argv[0] = "/usr/bin/env";
argv[1] = NULL;

execve("/usr/bin/env", argv, NULL);

return 0 ;
}

Step 2. Now, change the invocation of execve() to the following, and describe your observation.

execve("/usr/bin/env", argv, environ);

Step 3. Please draw your conclusion regarding how the new program gets its environment variables.

2.4 Task 4: Environment variables and system()

In this task, we study how environment variables are affected when a new program is executed via the
system() function. This function is used to execute a command, but unlike execve(), which di-
rectly execute a command, system() actually executes "/bin/sh -c command", i.e., it executes
/bin/sh, and asks the shell to execute the command.

If you look at the implementation of the system() function, you will see that it uses execl() to
execute /bin/sh; excel() calls execve(), passing to it the environment variables array. Therefore,
using system(), the environment variables of the calling process is passed to the new program /bin/sh.
Please compile and run the following program to verify this.

#include <stdio.h>
#include <stdlib.h>

int main()
{
system("/usr/bin/env");

return 0 ;
}

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 4

2.5 Task 5: Environment variable and Set-UID Programs

Set-UID is an important security mechanism in Unix operating systems. When a Set-UID program
runs, it assumes the owner’s privileges. For example, if the program’s owner is root, then when anyone runs
this program, the program gains the root’s privileges during its execution. Set-UID allows us to do many
interesting things, but it escalates the user’s privilege when executed, making it quite risky. Although the
behaviors of Set-UID programs are decided by their program logic, not by users, users can indeed affect
the behaviors via environment variables. To understand how Set-UID programs are affected, let us first
figure out whether environment variables are inherited by the Set-UID program’s process from the user’s
process.

Step 1. We are going to write a program that can print out all the environment variables in the current
process.

#include <stdio.h>
#include <stdlib.h>

extern char **environ;

void main()
{
int i = 0;
while (environ[i] != NULL) {

printf("%s\n", environ[i]);
i++;

}
}

Step 2. Compile the above program, change its ownership to root, and make it a Set-UID program.

Step 3. In your Bash shell (you need to be in a normal user account, not the root account), use the
export command to set the following environment variables (they may have already exist):

• PATH

• LD LIBRARY PATH

• ANY NAME (this is an environment variable defined by you, so pick whatever name you want).

These environment variables are set in the user’s shell process. Now, run the Set-UID program from
Step 2 in your shell. After you type the name of the program in your shell, the shell forks a child process,
and uses the child process to run the program. Please check whether all the environment variables you set
in the shell process (parent) get into the Set-UID child process. Describe your observation. If there are
surprises to you, describe them.

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 5

2.6 Task 6: The PATH Environment variable and Set-UID Programs

Because of the shell program invoked, calling system() within a Set-UID program is quite dangerous.
This is because the actual behavior of the shell program can be affected by environment variables, such as
PATH; these environment variables are provided by the user, who may be malicious. By changing these
variables, malicious users can control the behavior of the Set-UID program. In Bash, you can change
the PATH environment variable in the following way (this example adds the directory /home/seed to the
beginning of the PATH environment variable):

$ export PATH=/home/seed:$PATH

The Set-UID program below is supposed to execute the /bin/ls command; however, the program-
mer only uses the relative path for the ls command, rather than the absolute path:

int main()
{

system("ls");
return 0;

}

Please compile the above program, and change its owner to root, and make it a Set-UID program.
Can you let this Set-UID program run your code instead of /bin/ls? If you can, is your code running
with the root privilege? Describe and explain your observations.

2.7 Task 7: The LD PRELOAD environment variable and Set-UID Programs

In this task, we study how Set-UID programs deal with some of the environment variables. Several en-
vironment variables, including LD PRELOAD, LD LIBRARY PATH, and other LD * influence the behavior
of dynamic loader/linker. A dynamic loader/linker is the part of an operating system (OS) that loads (from
persistent storage to RAM) and links the shared libraries needed by an executable at run time.

In Linux, ld.so or ld-linux.so, are the dynamic loader/linker (each for different types of binary).
Among the environment variables that affect their behaviors, LD LIBRARY PATH and LD PRELOAD are
the two that we are concered in this lab. In Linux, LD LIBRARY PATH is a colon-separated set of directories
where libraries should be searched for first, before the standard set of directories. LD PRELOAD specifies
a list of additional, user-specified, shared libraries to be loaded before all others. In this task, we will only
study LD PRELOAD.

Step 1. First, we will see how these environment variables influence the behavior of dynamic loader/linker
when running a normal program. Please follow these steps:

1. Let us build a dynamic link library. Create the following program, and name it mylib.c. It basically
overrides the sleep() function in libc:

#include <stdio.h>
void sleep (int s)
{

/* If this is invoked by a privileged program,
you can do damages here! */

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 6

printf("I am not sleeping!\n");
}

2. We can compile the above program using the following commands (in the -lc argment, the second
character is `):

% gcc -fPIC -g -c mylib.c
% gcc -shared -o libmylib.so.1.0.1 mylib.o -lc

3. Now, set the LD PRELOAD environment variable:

% export LD_PRELOAD=./libmylib.so.1.0.1

4. Finally, compile the following program myprog, and it in the same directory as the above dynamic
link library libmylib.so.1.0.1:

/* myprog.c */
int main()
{

sleep(1);
return 0;

}

Step 2. After you have done the above, please run myprog under the following conditions, and observe
what happens.

• Make myprog a regular program, and run it as a normal user.

• Make myprog a Set-UID root program, and run it as a normal user.

• Make myprog a Set-UID root program, export the LD PRELOAD environment variable again in
the root account and run it.

• Make myprog a Set-UID user1 program (i.e., the owner is user1, which is another user account),
export the LD PRELOAD environment variable again in a different user’s account (not-root user) and
run it.

Step 3. You should be able to observe different behaviors in the scenarios described above, even though
you are running the same program. You need to figure out what causes the difference. Environment variables
play a role here. Please design an experiment to figure out the main causes, and explain why the behaviors
in Step 2 are different. (Hint: the child process may not inherit the LD * environment variables).

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 7

2.8 Task 8: Invoking external programs using system() versus execve()

Although system() and execve() can both be used to run new programs, system() is quite danger-
ous if used in a privileged program, such as Set-UID programs. We have seen how the PATH environment
variable affect the behavior of system(), because the variable affects how the shell works. execve()
does not have the problem, because it does not invoke shell. Invoking shell has another dangerous conse-
quence, and this time, it has nothing to do with environment variables. Let us look at the following scenario.

Bob works for an auditing agency, and he needs to investigate a company for a suspected fraud. For
the investigation purpose, Bob needs to be able to read all the files in the company’s Unix system; on the
other hand, to protect the integrity of the system, Bob should not be able to modify any file. To achieve this
goal, Vince, the superuser of the system, wrote a special set-root-uid program (see below), and then gave the
executable permission to Bob. This program requires Bob to type a file name at the command line, and then
it will run /bin/cat to display the specified file. Since the program is running as a root, it can display any
file Bob specifies. However, since the program has no write operations, Vince is very sure that Bob cannot
use this special program to modify any file.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
char *v[3];
char *command;

if(argc < 2) {
printf("Please type a file name.\n");
return 1;

}

v[0] = "/bin/cat"; v[1] = argv[1]; v[2] = NULL;

command = malloc(strlen(v[0]) + strlen(v[1]) + 2);
sprintf(command, "%s %s", v[0], v[1]);

// Use only one of the followings.
system(command);
// execve(v[0], v, NULL);

return 0 ;
}

Step 1: Compile the above program, make root its owner, and change it to a Set-UID program. The
program will use system() to invoke the command. If you were Bob, can you compromise the integrity
of the system? For example, can you remove a file that is not writable to you?

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 8

Step 2: Comment out the system(command) statement, and uncomment the execve() statement;
the program will use execve() to invoke the command. Compile the program, and make it Set-UID
(owned by root). Do your attacks in Step 1 still work? Please describe and explain your observations.

2.9 Task 9: Capability Leaking

To follow the Principle of Least Privilege, Set-UID programs often permanently relinquish their root
privileges if such privileges are not needed anymore. Moreover, sometimes, the program needs to hand over
its control to the user; in this case, root privileges must be revoked. The setuid() system call can be
used to revoke the privileges. According to the manual, “setuid() sets the effective user ID of the calling
process. If the effective UID of the caller is root, the real UID and saved set-user-ID are also set”. Therefore,
if a Set-UID program with effective UID 0 calls setuid(n), the process will become a normal process,
with all its UIDs being set to n.

When revoking the privilege, one of the common mistakes is capability leaking. The process may have
gained some privileged capabilities when it was still privileged; when the privileged is downgraded, if the
program does not clean up those capabilities, they may still be accessible by the non-privileged process.
In other words, although the effective user ID of the process becomes non-privileged, the process is still
privileged because it possesses privileged capabilities.

Compile the following program, change its owner to root, and make it a Set-UID program. Run the
program as a normal user, and describe what you have observed. Will the file /etc/zzz be modified?
Please explain your observation.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

void main()
{ int fd;

/* Assume that /etc/zzz is an important system file,

* and it is owned by root with permission 0644.

* Before running this program, you should creat

* the file /etc/zzz first. */
fd = open("/etc/zzz", O_RDWR | O_APPEND);
if (fd == -1) {

printf("Cannot open /etc/zzz\n");
exit(0);

}

/* Simulate the tasks conducted by the program */
sleep(1);

/* After the task, the root privileges are no longer needed,
it’s time to relinquish the root privileges permanently. */

setuid(getuid()); /* getuid() returns the real uid */

if (fork()) { /* In the parent process */
close (fd);

Adapted from SEED Labs for CMSC 191: Special Topics in Computer and Network Security
Institute of Computer Science, University of the Philippines Los Banos 9

exit(0);
} else { /* in the child process */

/* Now, assume that the child process is compromised, malicious
attackers have injected the following statements
into this process */

write (fd, "Malicious Data\n", 15);
close (fd);

}
}

3 Submission

You need to submit a detailed lab report to describe what you have done and what you have observed,
including screenshots and code snippets. You also need to provide explanation to the observations that are
interesting or surprising. You are encouraged to pursue further investigation, beyond what is required by the
lab description. Your can earn bonus points for extra efforts (at the discretion of your instructor).

