
SHELLSHOCK ATTACK

Background: Shell Functions
• Shell program is a command-line interpreter in operating systems

• Provides an interface between the user and operating system
• Different types of shell : sh, bash, csh, zsh, windows powershell etc

• Bash shell is one of the most popular shell programs in the Linux OS
• The shellshock vulnerability are related to shell functions.

Passing Shell Function to Child
Process
Approach 1: Define a function in the parent shell, export it, and then the child
process will have it. Here is an example:

Passing Shell Function to Child
Process
Approach 2: Define an environment variable. It will become a function
definition in the child bash process.

Passing Shell Function to Child
Process
• Both approaches are similar. They both use environment variables.
• Procedure:
• In the first method, When the parent shell creates a new process, it passes each

exported function definition as an environment variable.
• If the child process runs bash, the bash program will turn the environment

variable back to a function definition, just like what is defined in the second
method.

• The second method does not require the parent process to be a shell
process.
• Any process that needs to pass a function definition to the child bash

process can simply use environment variables.

Shellshock Vulnerability

• Vulnerability named Shellshock or bashdoor was publicly release on
September 24, 2014. This vulnerability was assigned CVE-2014-6271
• This vulnerability exploited a mistake mad by bash when it converts

environment variables to function definition
• The bug found has existed in the GNU bash source code since August 5,

1989
• After the identification of this bug, several other bugs were found in the

widely used bash shell
• Shellshock refers to the family of the security bugs found in bash

Shellshock Vulnerability
• Parent process can pass a function definition to a child shell process via an

environment variable
• Due to a bug in the parsing logic, bash executes some of the command contained in

the variable

Extra command

Mistake in the Bash Source Code
• The shellshock bug starts in the variables.c file in the bash source code
• The code snippet relevant to the mistake:

Mistake in the Bash Source Code
• In this code, at Line ①, bash checks if there is an exported function by

checking whether the value of an environment variable starts with “() {”
or not. Once found, bash replaces the “=“ with a space.

• Bash then calls the function parse_and_execute() (Line②) to
parse the function definition. Unfortunately, this function can parse
other shell commands, not just function definition

• If the string is a function definition, the function will only parse it and not
execute it

• If the string contains a shell command, the function will execute it.

Mistake in the Bash Source Code

• For Line A, bash identifies it as a function because of the leading “() {“ and
converts it to Line B

• We see that the string now becomes two commands.

• Now, parse_and_execute() will execute both commands

• Consequences:
• Attackers can get process to run their commands
• If the target process is a server process or runs with a privilege, security breaches can occur

Exploiting the Shellshock Vulnerability

Two conditions are needed to exploit the vulnerability:

1) The target process should run bash
2) The target process should get untrusted user inputs via environment variables

Shellshock Attack on Set-UID
Programs
In the following example, a Set-UID root program will start a bash process, when it
execute the program /bin/ls via the system() function. The environment set by the
attacker will lead to unauthorized commands being executed

Setting up the vulnerable program
• Program uses the system() function to run the /bin/ls command
• This program is a Set-UID root program
• The system function actually uses fork() to create a child process, then uses execl() to execute the

/bin/sh program

Shellshock Attack on Set-UID
Programs

The program is going to
invoke the vulnerable bash
program. Based on the
shellshock vulnerability, we
can simply construct a
function declaration.

Shellshock Attack on CGI Programs

• Common gateway interface (CGI) is utilized by web servers to run
executable programs that dynamically generate web pages.

• Many CGI programs use shell scripts, if bash is used, they may be subject
to the Shellshock attack.

Shellshock Attack on CGI Programs:
Setup
• We set up two VM’s for this experiment and write a very simple CGI

program (test.cgi). One for attacker(10.0.2.6) and one for the victim
(10.0.2.5). It is written using bash shell script.

• We need to place this CGI program in the victims server’s /usr/bin/cgi-bin
directory and make it executable. We can use curl to interact with it.

How Web Server Invokes CGI
Programs

• When a user sends a CGI URL to the Apache web server, Apache will examine the request
• If it is a CGI request, Apache will use fork() to start a new process and then use the exec()

functions to execute the CGI program
• Because our CGI program starts with “#! /bin/bash”, exec() actually executes /bin/bash,

which then runs the shell script

How Use Data Get Into CGI Programs

• When Apache creates a child process, it provides all the environment
variables for the bash programs.

Using curl to get the http
request and response

Pay attention to these two:
they are the same: data from
the client side gets into the
CGI program’s environment
variable!

How Use Data Get Into CGI Programs
• We can use the “-A” option of the command line tool “curl” to change

the user-agent field to whatever we want.

Launching the Shellshock Attack

• Our /bin/ls command gets executed.
• By default web servers run with the www-data user ID in Ubuntu. Using

this privilege , we cannot take over the server, but there a few damaging
things we can do.

Shellshock Attack: Steal Passwords
• When a web application connects to its back-end databases, it needs to provide login

passwords. These passwords are usually hard-coded in the program or stored in a
configuration file. The web server in our ubuntu VM hosts several web applications, most of
which use database.

• For example, we can get passwords from the following two files:
• /var/www/SQL/collabtive/config/standard/config.php
• /var/www/SeedElgg/engine/settings.php

• Let’s steal them

Shellshock Attack: Create Reverse Shell

• Attackers like to run the shell program by exploiting the shellshock vulnerability, as this
gives them access to run whichever commands they like
• Instead of running /bin/ls, we can run /bin/bash. However, the /bin/bash command is

interactive.
• If we simply put /bin/bash in our exploit, the bash will be executed at the server side,

but we cannot control it. Hence, we need to do something called reverse shell.
• The key idea of a reverse shell is to redirect the standard input, output and error

devices to a network connection.
• This way the shell gets input from the connection and outputs to the connection.

Attackers can now run whatever commands they like and get the output on their
machine.
• Reverse shell is a very common hacking technique used by many attacks.

Create a Reverse Shell

• We start a netcat (nc) listener on the Attacker machine (10.0.2.6)
• We run the exploit on the server machine which contains the reverse shell command

(to be discussed in next slide)
• Once the command is executed, we see a connection from the server (10.0.2.5)
• We do an “ifconfig” to check this connection
• We can now run any command we like on the server machine

Creating Reverse Shell

The option i stands for
interactive, meaning
that the shell should be
interactive.

This causes the output
device (stdout) of the
shell to be redirected to
the TCP connection to
10.0.2.6’s port 9090.

File descriptor 0 represents the standard input device
(stdin) and 1 represents the standard output device
(stdout). This command tell the system to use the
stdout device as the stdin device. Since the stdout is
already redirected to the TCP connection, this option
basically indicates that the shell program will get its
input from the same TCP connection.

File descriptor 2 represents
the standard error (stderr).
This cases the error output to
be redirected to stdout,
which is the TCP connection.

Shellshock Attack on CGI: Get
Reverse Shell

Summary

• Function definition in Bash
• Implementation mistake in the parsing logic
• Shellshock vulnerability
• How to exploit the vulnerability
• How to create a reverse shell using the Shellshock attack

	Slide 1
	Background: Shell Functions
	Passing Shell Function to Child Process
	Passing Shell Function to Child Process
	Passing Shell Function to Child Process
	Shellshock Vulnerability
	Shellshock Vulnerability
	Mistake in the Bash Source Code
	Mistake in the Bash Source Code
	Mistake in the Bash Source Code
	Exploiting the Shellshock Vulnerability
	Shellshock Attack on Set-UID Programs
	Shellshock Attack on Set-UID Programs
	Shellshock Attack on CGI Programs
	Shellshock Attack on CGI Programs: Setup
	How Web Server Invokes CGI Programs
	How Use Data Get Into CGI Programs
	How Use Data Get Into CGI Programs
	Launching the Shellshock Attack
	Shellshock Attack: Steal Passwords
	Shellshock Attack: Create Reverse Shell
	Create a Reverse Shell
	Creating Reverse Shell
	Shellshock Attack on CGI: Get Reverse Shell
	Summary

